• Title/Summary/Keyword: foaming process

Search Result 192, Processing Time 0.03 seconds

Processing of Al2O3 Ceramics with a Porous Cellular Structure (셀 다공구조를 갖는 Al2O3세라믹스의 제조)

  • Lim, Byong-Gu;Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.574-579
    • /
    • 2007
  • Porous $Al_2O_3$ ceramics were prepared by the gelcasting foams method (a slurry foaming process) with acrylamide monomer. The foaming and gelation behavior was investigated with the parameters such as the type and concentration of surfactant, solid loading of slurry, and the concentrations of initiator and catalyst. Density, porosity, microstructure, and strength of the green and sintered samples were characterized. Of the four kinds of surfactants tested, Triton X-114 showed the highest foaming ability for the solid loading of 55-30 vol%. The gelation condition giving the idle time off min was found to set the foamed structure without significant bubble enlargement and liquid lamella thinning. The green samples were fairly strong and machinable and showed maximum strength of 2.4 MPa in diametral compression. The sintered samples showed densities of 10-36% theoretical (i.e. porosity 90-64%) with a highly interconnected network of spherical pores with sizes ranging from 30 to $600{\mu}m$. The pore size and connectivity increased but the cell strut thickness decreased with decreasing the solid loading. Flexural strength of 37.8-1.7 MPa was obtained for the sintered samples.

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

Design of Gas Supply System for Microcellular Foamed Injection Molding Using Axiomatic Approach (공리적 접근을 사용한 초미세 발포 사출기용 가스공급장치의 설계)

  • Lee, J.W.;Cha, S.W.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.414-419
    • /
    • 2001
  • Microcellular foamed plastic is a foaming technology that is safer to the environment and has no significant deterioration of mechanical properties compared to the conventional foamed plastic. Currently, the development of the injection-molding machine for microcellular plastic (MCP) is nearing completion. Currently, researches on the mass production system for the MCP injection-molding machine are under progress. The purpose of this paper is to design the gas supply system suitable for microcellular foaming in the injection-molding machine. For the design process, Axiomatic Approach, a powerful tool for design, will be used.

  • PDF

A Study on Foaming Characteristics of Polyurethane Depending On Environmental Temperature and Blowing Agent Content (반응온도와 발포제 함량에 따른 폴리우레탄 발포특성에 관한 연구)

  • Kim, H.S.;Youn, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.256-261
    • /
    • 2009
  • Polyurethane has been one of the most important materials for automobile elastic parts such as bumper, head rest, instrument panel and so on since it covers very wide range of mechanical characteristics with low production costs. The processing variables such as formulation of ingredients and mold temperature, mixing speed, etc. can affect the quality of produced polyurethane foams so that process conditions should be determined appropriately. In this study, foaming behaviors of semi-rigid polyurethane were investigated by conducting cup foam tests with two major processing variables such as environmental temperature and blowing agent content. In addition, it was verified that processing conditions of real practice can be determined effectively by considering foaming characteristics obtained by the cup foam tests.

The Study on the Rheological Properties of Polymer Matrix for MIF (Molded-In Foaming) Process (MIF (Molded-In Foaming) 공정에 적합한 고분자 기재의 유변학적 특성 연구)

  • Kim, Mingeun;Song, Hyeong Yong;Kim, Dong Gun;Kim, Hyo Jun;Park, Geon Uk;Yu, Jae Keun;Hyun, Kyu
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2014
  • In order to select polymer matrix for MIF (Molded-In Foaming) process, in this study, we investigated rheological properties of commercial polymers, SBC (Styrene-Butadiene Copolymers, K-resin KK38) and SBS (Styrene- Butadiene-Styrene, KTR 101 and KTR 301). In time sweep test, the rheological properties ($G^{\prime}$, $G^{{\prime}{\prime}}$, ${\eta}^*$) of SBS at 155 and $170^{\circ}C$ display almost constant value as a function of time from 0 s to 1800 s. On contrast, the rheological properties of SBS at 185 and $200^{\circ}C$ exponentially increase as a function of time. It could be due to gelation of SBS at high temperature conditions. These increment of rheological properties are not observed in SBC. From LAOS (large amplitude oscillatory shear) test, the nonlinear rheological properties of SBS at 155 and $200^{\circ}C$ after 1800 s are compared. The nonlinear rheological properties at $155^{\circ}C$ show simple strain thinning behavior such as linear homopolymer, however, the nonlinear rheological properties at $200^{\circ}C$ show 2 times strain thinning behavior (Payne effect). It well match with the gelation of SBS at $200^{\circ}C$. From rheological studies, it is confirmed that the proper polymer matrix for MIF process (low rheological properties at initial time and high rheological properties after process) is SBS KTR 301.

Anti-Foaming Properties of Polypropylene Glycol Oleates (올레산 폴리프로필렌글리콜 에스테르류의 소포특성)

  • Li, Hai-Yan;Choi, Hyoung-Chul;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • In this study, by using oleic acid and polypropylene glycol, good natured antifoaming agent for suitable electronics process under the alkaline conditions were synthesized. For the synthesized mono and diesters, acid value, hydroxyl value was measured, and identified by FT-IR and $^1H-NMR$ spectroscopy. Surface properties such as surface tension, critical micelle concentration(cmc) for diluted aqueous solution was measured, and tested the antifoaming properties according to the difference of alkyl chain length, various concentration, temperature and pH. The surface tension of synthesized antifoaming agent, PPMO(Polypropylene glycol monooleate) was 24.3 dyne/cm, PPDO(Polypropylene glycol dioleate) was 23.7 dyne/cm. By increasing of the alkyl chain length, surface tension was decreased slightly, and showed good antifoaming properties at 0.06 wt% concentration and $50^{\circ}C$, pH 11. These synthesized compounds are expected to apply as a suitable antifoaming agents in the semiconductor and the PCB(Printed Circuit Board) manufacturing process.

A Study on Foaming Characteristics of Polyurethane Reaction Injection Molding using Cup Foam Test (컵 발포시험을 이용한 폴리우레탄 반응사출성형의 발포 특성에 관한 연구)

  • Youn, J.W.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.106-109
    • /
    • 2008
  • Polyurethane has been one of the most important materials for automobile elastic parts such as bumper, head rest, instrument panel and so on since it covers very wide range of mechanical characteristics with low production costs. The process variables such as formulation of ingredients and mold temperature, mixing speed, etc. can affect the quality of produced polyurethane foams so that process conditions should be determined appropriately. In this study, foaming behaviors of semi-rigid polyurethane were investigated by conducting cup foam tests with 2 major process variables such as environmental temperature and blowing agent content.

  • PDF

Effect of Invertase on the Batch Foam Fvactionation of Bromelain

  • D. Micheal Ackermann;Jr., Matthew L. Stedman;Samuel Ko;Ales Prokop;Park, Don-Hee;Robert D. Tanner
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.167-172
    • /
    • 2003
  • Foam fractionation can be used to enrich a hydrophobic protein such as bromelain from an aerated dilute protein solution because the protein foams. On the other hand, a protein such as invertase, which is hydrophilic, is not likely to foam under similar aerated conditions. While a foam fractionation process may not be appropriate for recovering a hydrophilic protein alone, it is of interest to see how that non-foaming protein affects the foaming protein when the two are together in a mixture. The bromelain enrichment, activity and mass recovery were observed as a function of the solution pH in order to explore how invertase can affect the recovery of bromelain in a foam fractionation process.