• Title/Summary/Keyword: flyash

Search Result 99, Processing Time 0.027 seconds

Triboelectrostatic Separation of Unburned Carbon from Flyash for Ash Recycling (마찰대전 정전분리기를 이용하여 석탄회에 함유된 미연탄소분 제거에 관한 연구)

  • 이재근;김성찬;손낙원;김두현;오정근
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.15-21
    • /
    • 1997
  • Flyash from a coal-hed power plan1 is produced approximtcly 3 million tons m 1996 and causes the serious environmentalpmblem due to the disposal in the ash pond. Flyash is an accepted additive in concrete where it adds strength, sulfate ateresistanceand reduced cost, provided acccptablc levcls of unbunrned carbon are mmtmed This papzr describes to investigate thc technicalfeasibility of a dry triboelcctrostatlcp roccss to scparate unburned carbon h m f lyash into economically valuable produck Puliclesof unburned carbon and flyash can be impded positivc and negative surface charzes. rcapeclively. with a copper tniochargcr dueto dirferences in the work function values of thc particles and the tnbacharger. and cm he separated by passing thcm throuph anexternal electic field. A laboratory s d e separation system consists of r sacw feeder for ash supply, a tniocharger, verticalcollecling copper plates, power supplies, a flow meter, and a fan. Separation tests taking into account separahian efficiency and ashrecovery showed that flyash recovery was sh-nngly dependent an thc tnbocharger geomzhy, elect"c ficld strength. flyssh s ~ c a,n dash feeding late. Optimal separation conditions were flyash size less than 125 Fm and electric field shcngrh of 200 kV1m. Ovcr 80%of the flyash with 7% lass on ignition was recovered at wrbon contznts less than 3%bon contznts less than 3%

  • PDF

The Hydration of Hardenced Flyash-$Ca(OH)_2-CaSO_4$.$2H_2O$ System (Flyash-$Ca(OH)_2-CaSO_4$.$2H_2O$계의 수화반응)

  • 김창은;이승헌;이상완;김원기
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.27-34
    • /
    • 1986
  • The hydration of flyash-$Ca(OH)_2-CaSO_4$.$2H_2O$ system was stuedied with varing mixing ratio of flyahs $Ca(OH)_2$ and caSO4.2H2O The samples were steam-cured for 1-7 days at 9$0^{\circ}C$. The optimum mixing composition was flyash : Ca (OH)2=65:35 with 15% $CaSO_4$.42H_2O$ added which produced the hardened material having the best compressive strength (300kg/$cm^2$) Also the low specific gravity(1, 2) of the hardened paste suggests the possibility that it can be used as a light-weight building material. The added $CaSO_4$.42H_2O$ constituted calcium-sulfo-aluminate hydrates which activates the formation of C-S-H hy-drates. Both hydrates developed the strength of hardened paste. The amount of calcium-sulfo-aluminate hydrates was increased when the $CaSO_4$.42H_2O$ was added over 15% however the increased amount did not help the development of strength because of the individually grown calcium-sulfo-aluminate hydrates.

  • PDF

Strength Properties by Curing Temperature of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 양생온도에 따른 강도성상)

  • 이동하;정근호;백민수;김성식;임남기;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.63-66
    • /
    • 2002
  • In this study, it does a high volume flyash substituted concrete experiments in two curing temperature circumstances - 35$^{\circ}C$, 2$0^{\circ}C$. High volume flyash concrete is tested in fresh concrete properties and hardeded concrete properties. In the fresh concrete test items, there is slump, air contents, concrete setting tests. 3, 7, and 28 days water curing compressive strength is measured in the hardened concrete test. The purpose of this study is to submit a various flyash concrete data for application to field. The result of this study is that the best strength is developed at the plain concrete cured 2$0^{\circ}C$ and Mixing F43 shows the best strength among specimens which cured at 35$^{\circ}C$

  • PDF

A Fundamental Study on the Workability and Engineering Properties of Super High Strength Concrete Replaced Cement As Fly ash (플라이애쉬를 대체한 초고강도 콘크리트의 시공성 및 공학적 특성에 관한 기초적 연구)

  • 류광일;윤병수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.5-10
    • /
    • 1993
  • Recently, owing to efficiency of the concrete work and the rationalization of construction structures, concrete is required to be super high strength. Furthermore, it is take a growing interest in execution and manufacture for super high strength concrete. This study is to investigate and analyze the influenced of flyash affecting on workability and engineering properties of super high strength concrete. In this experiment, the 28day's compressive strength of concrete using 15mm size of aggregate and flyash is over 800㎏/㎠ in the 20°/wt of water∼cement ratio. And the concrete using flyash have higher tensile strength than plain concrete.

  • PDF

Flyash를 이용한 일일복토재의 포설 사례 연구

  • 박상현;한완수;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.386-389
    • /
    • 2002
  • It may be necessary to apply a daily fever to operate the municipal solid waste landfill. The daily cover helps to control nuisance factors such as the escape of odors, dusts and airborne emissions, and can control the population of disease vectors. Also it may be reduce the infiltration of rain, decreasing the generation of leachate and the potential for surface water and groundwater contamination. Because of its usual availability and traditional usage as the municipal solid waste landfill, soil remains as the most common daily cover material. However, soil tends to reduce the volume of dumping waste c;3pacity in the landfill, it also reduces a period of using in the landfill. Therefore, it is necessary to research about Alternative Daily Cover Materials (ADCMs) because of the limitation of landfill sites. Recently, The types of ADCMs are classified into geosynthetics, forms, spray-ons, indigenous materials. In this study, the authors have tested the spray type of Alternative Daily Cover(ADC) using by flyash, alum with cement. The development. of ADCMs will be highly effective in terms of prolongation using landfill.

  • PDF

Slump Loss of High Strength Concrete Containing Mineral Admixture and Gypsum (광물질 혼화재 및 석고를 사용한 고강도 콘크리트의 슬럼프 손실)

  • 김기형;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • High strength concrete(HSC) using high range water reducing admixture (HRWR) has the defect which severe slump loss occurs according to elapsed time. For using HSC without any trouble, special caution and countermeasure against this problem are necessary. In this study, for minimizing the slump loss of HSC, mineral admixture( flyash, ground granulated blast furnace slag ) and gypsum were used experimentally. Flyash and ground granulated blast furnace slag are effective in reducing the slump loss of HSC. Especially, the slump loss of HSC containing mineral admixture and gypsum Is minimized by the aggregation inhibiting action of gypsum. Cement substituted with flyash 30% or ground granulated blast furnace slag 50% by weight are very effective in minimizing the slump loss.

  • PDF

Development of Reduction Methods of Thermal Stresses Due to Hydration Heat (수화열에 의한 균열 저감 공법에 관한 연구)

  • Yang, Jo-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1705-1710
    • /
    • 2008
  • In this paper, a program for simulating hydration heat and stresses was developed. And an effective methods were proposed for reduction of hydration heat stresses using flyash and steel fiber. It was shown that flyash replacement made reduction of peak temperature due to hydration heat. However, the effectiveness of reduction of tensile stress was not as good as it of peak temperature. Not only peak temperature but also tensile stress were reduced by the addition of steel fiber.

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.