• Title/Summary/Keyword: fly-back mechanism

Search Result 3, Processing Time 0.019 seconds

Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism

  • Fiouz, A.R.;Obeydi, M.;Forouzani, H.;Keshavarz, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.501-519
    • /
    • 2012
  • Truss weight is one of the most important factors in the cost of construction that should be reduced. Different methods have been proposed to optimize the weight of trusses. The artificial bee colony algorithm has been proposed recently. This algorithm selects the lightest section from a list of available profiles that satisfy the existing provisions in the design codes and specifications. An important issue in optimization algorithms is how to impose constraints. In this paper, the artificial bee colony algorithm is used for the discrete optimization of trusses. The fly-back mechanism is chosen to impose constraints. Finally, with some basic examples that have been introduced in similar articles, the performance of this algorithm is tested using the fly-back mechanism. The results indicate that the rate of convergence and the accuracy are optimized in comparison with other methods.

Triangular units based method for simultaneous optimizations of planar trusses

  • Mortazavi, Ali;Togan, Vedat
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 2017
  • Simultaneous optimization of trusses which concurrently takes into account design variables related to the size, shape and topology of the structure is recognized as highly complex optimization problems. In this class of optimization problems, it is possible to encounter several unstable mechanisms throughout the solution process. However, to obtain a feasible solution, these unstable mechanisms somehow should be rejected from the set of candidate solutions. This study proposes triangular unit based method (TUBM) instead of ground structure method, which is conventionally used in the topology optimization, to decrease the complexity of search space of simultaneous optimization of the planar truss structures. TUBM considers stability of the triangular units for 2 dimensional truss systems. In addition, integrated particle swarm optimizer (iPSO) strengthened with robust technique so called improved fly-back mechanism is employed as the optimizer tool to obtain the solution for these class of problems. The results obtained in this study show the applicability and efficiency of the TUBM combined with iPSO for the simultaneous optimization of planar truss structures.

Improved thermal exchange optimization algorithm for optimal design of skeletal structures

  • Kaveh, A.;Dadras, A.;Bakhshpoori, T.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.263-278
    • /
    • 2018
  • Thermal Exchange Optimization (TEO) is a newly developed algorithm which mimics the thermal exchange between a solid object and its surrounding fluid. In this paper, an improved version of the TEO is developed to fix the shortcomings of the standard version. To demonstrate the viability of the new algorithm, the CEC 2016's single objective problems are considered along with the discrete size optimization of benchmark skeletal structures. Problem specific constraints are handled using a fly-back mechanism. The results show the validity of the improved TEO method compared to its standard version and a number of well-known algorithms.