• Title/Summary/Keyword: fly ash-binder ratio

Search Result 186, Processing Time 0.026 seconds

A Study on the Quality of the Domestic Fly Ash as an Additive for Concrete (콘크리트용 혼화재(混和材)로서 국산 플라이애쉬의 품질에 관한 실험적 연구)

  • Moon, Han Young;Seo, Joung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 1987
  • To use fly ash as an additive for concrete, authors collected 15 kinds of domestic fly ashes and tested the chemical compositions and physical properties of the fly ashes. Fluidity of the fly ash paste was also investigated. The result shows that the chemical compositions of the fly ashes were in the range of regulation of Korean Industrial Standards except ignition loss and the following relationships in fly ash were studied; specific surface and residue in standard sieve, specific surface and unit weight, residue in standard sieve and ignition loss. For the given flow properties, fly ash paste required higher water-binder ratio than cement paste.

  • PDF

Properties of pervious concrete containing high-calcium fly ash

  • Sata, V.;Ngohpok, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.337-351
    • /
    • 2016
  • This paper presents the properties of pervious concrete containing high-calcium fly ash. The water to binder ratios of 0.19, 0.22, and 0.25, designed void ratios of 15, 20, and 25%, and fly ash replacements of 10, 20, and 30% were used. The results showed that the use of fly ash as partial replacement of Portland cement enhanced the mixing of paste resulting in a uniform mix and reduced amount of superplasticizer used in the mixture. The compressive strength and flexural strength of pervious concrete were slightly reduced with an increase in fly ash replacement level, while the abrasion resistance increased due mainly to the pozzolanic and filler effects. The compressive strength and flexural strengths at 28 days were still higher than 85% of the control concrete. The aggregate size also had a significant effect on the strength of pervious concrete. The compressive strength and flexural strength of pervious concrete with large aggregate were higher than that with small aggregate.

A Study on the Mix Proportioning and Strength Properties of Concrete Mixtures Containing Flyash (플라이애쉬를 혼합(混合)한 콘크리트의 배합(配合) 및 강도특성(强度特性)에 관한 연구(研究))

  • Moon, Han Young;Seo, Joung Woo;Son, Hyung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.43-52
    • /
    • 1988
  • In this paper, three kinds of proportioning method on concrete mixes containing fly ash as an admixture were compared and investigated. As the test results for relationships between substitution ratio of fly ash, water-binder ratio, ages and strength besides the proportioning methods and workability of fresh concrete beneficial reference data to estimate quality of domestic fly ash were atained.

  • PDF

An Experimental Study on the Influence of High Quality Fly ash and Water-Binder Ratio on Properties of the Ternary System Concrete (3성분계 콘크리트의 특성에 미치는 고품질 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Seung-Min;Kim, Dong-Sool;Rho, Hyoung-Nam;Jung, Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.877-880
    • /
    • 2008
  • Recently the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high quality fly ash remains at a low level. Accordingly, this study was to establish 8000 class of fineness of fly ash and three levels of substitute like 15%, 3 0%, and 45% in order to analyze the replacement ratio and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, it increased the fluidity in a fresh state, and it decreased the air content. This study has found out the setting acceleration and reduction of heat of hydration. As for the strength property in a set state, this study has shown the tendency of being equal or higher in age 28 days.

  • PDF

An Experimental Study on the mechanical and Shrinkage Properties of Concrete Using High Fineness Fly ash (고분말도 플라이애쉬를 사용한 콘크리트의 역학 및 수축특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Bae, Pil-Sik;Kim, Sung-Soo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.725-728
    • /
    • 2008
  • This study was to establish 3 levels of high fineness fly ash like 4000, 6000, and 8000 class and 30% replacement ratio in order to analyze mechanics and shrinkage properties of concrete by using high fineness fly ash. Furthermore, this study was to make a plan in two levels of water-binder ratio like 40% and 50%. In addition, as a result of measurement by the establishment of combined condition of ternary system as 20% replacement ratio level of three sorts of ground granulated blast furnace slag, there was a tendency to be equal or higher to the plain concrete as the fineness of fly ash increased in strength property. Simultaneously, this study had a tendency in the relationship between the compressive strength and elastic modulus that the more the fineness of fly ash, the more the elastic modulus increased a little. In addition, this study had a tendency that the more elastic modulus moved to the long-term aged one, the more it increased definitely. The effect on the fineness of fly ash remained at a low level in the drying shrinkage. This study has shown that the more the fineness increased, the more the elastic modulus decreased.

  • PDF

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

Carbonation Behavior of Lightweight Foamed Concrete Using Coal Fly Ash

  • Lee, Jae Hoon;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.354-361
    • /
    • 2016
  • The purpose of this study was to prepare lightweight foamed concrete by mixing coal fly ash of circulating fluidized bed combustion(CFBC) with cement, and to develop uses for recycling by analyzing carbonation behavior resulting from a change in conditions for pressurized carbonation. For concrete, CFBC coal fly ash was mixed with Portland cement to the water-binder ratio of 0.5, and aging was applied at room temperature after 3 days of curing at $20^{\circ}C$, RH 60%. For carbonation, temperature was fixed at $60^{\circ}C$ and time at 1 h in the use of autoclave. Pressures were controlled to be $5kgf/cm^2$ and the supercritical condition of $80kgf/cm^2$, and gas compositions were employed as $CO_2$ 100% and $CO_2$ 15%+N2 85%. In the characteristics of produced lightweight concrete, the characteristics of lightweight foamed concrete resulting from carbonation reaction were affirmed through rate of weight change, carbonation depth test, air permeability, and processing analysis for the day 28 specimen. Based on these results, it is concluded that the present approach could provide a viable method for mass production of eco-friendly lightweight foamed concrete from CFBC coal fly ash stabilized by carbonation.

A Study on the Choice of Optimal Mixtures and Sensibility Properties of High Strength Concrete and Mass Concrete to apply the High Rising Building (초고층구조물에 적용하기 위한 고강도콘크리트 및 매스콘크리트의 최적배합선정 및 민감도특성에 관한 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.153-159
    • /
    • 2005
  • This study is to choose the optimal mixture and to analyze the sensibility properties of High strength concrete and mass concrete to apply the high rising building. The main experimental variables were water/binder ratio $39\%,\;33\%,\;35\%\;and\;37\%$, replacement ratio of fly ash $5\%,\;10\%\;and\;15\%$, in the high strength concrete and water/binder ratio $39\%,\;41\%\;and\;43\%$, replacement ratio of fly ash $10\%,\;20\%\;and\;30\%$, in the man concrete. According to the test results, the principal conclusions are summarized as follows. 1) The slump(or slump flow) and air content of fresh concrete were found to be the highest in the elapsed time 30 minutes. 2) The optimal mixture conditions are W/B $40\%$, FA $25\%$ in the mass concrete and W/B $33.4\%$, FA $15\%$ in the high strength concrete. 3) The ranges of sensibility are satisfied in the moisture content ${\pm}l\%\;and\;S/a\;{\pm}2\%$.