• Title/Summary/Keyword: fly ash and slag

Search Result 587, Processing Time 0.032 seconds

Mix Design of Exposed Concrete Wall using Self Compacting Concrete (노출 구조물 벽체에 적용하기 위한 무다짐 콘크리트의 최적배합설계)

  • 손유신;이승훈;김규동;김한준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.555-560
    • /
    • 2002
  • The structure of Chosun-ilbo Boopyung factory was desined as exposed concrete. The self compacting concrete(non-vibrating concrete) must be applied to this case because the exposed concrete wall is very thin(200mm) and high(6m), Laboratory tests and semi mock-up test were performed for optimum mix design of the self compacting concrete. As a result, the optimum mixes were observed at the 3-component types(ope, fly-ash, slag powder) that Vp$\geq$0.175, Vw/Vp$\geq$0.95, W=170~175$kgf/m^3$ and B=500~540$kgf/m^3$ Based on this result. we make plan that the pilot productions of batcher plant, the full-scale mock up tests and site application.

  • PDF

A Comparative Study on the Performance Evaluation of Concrete Slab for Bridge Deck Overlay (교면포장용 콘크리트 슬래브의 성능평가에 대한 비교 연구)

  • Lee, Ji-Hoon;Park, Joon-Suk;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.483-486
    • /
    • 2007
  • The present study is an exploratory research concerned with evaluation of three types of high performance concrete for bridge deck applications. These include A-Type (silica fume 6%), B-Type (silica fume 6% plus fly ash 20%), C-Type (silica fume 6% plus blast-furnace slag 40%). Test results compare with Latex modified concrete (LMC) and Ordinary portland cement concrete (OPC). The results indicates that high performance concrete for bridge deck overlay shows the excellent mechanical and durability performance for LMC and OPC in case of static loading test. Analytical results are similar with experimental results. However there are relative errors of $1{\sim}4mm$ for deflection and maximum 12% for strain.

  • PDF

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

Properties of Low Heat Portland(Belite Rich) Cement Concrete (저열 포틀랜드(벨라이트)시멘트 콘크리트의 특성)

  • 하재담;김기수;김동석;구본창;조계홍;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.66-71
    • /
    • 1998
  • Recently, it has been increased to construct massive concrete structures, like under-ground structure, offshore structure etc., ie. concrete construction have become larger and higher and are demanding lower heat concrete to prevent thermal cracking. It has been progressed to replace cements with fly-ash and slag to lower heat of hydration, but it is hard to control quality of the mineral admixtures in stage of adjusting of real construction. Application of low heat portland(Belite Rich) cement for the mass concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of using low heat portland cement(LHPC). Also, we compare the results of adiabatic temperature rise test using LHPC and OPC.

  • PDF

Erosion Resistance Evaluation of High-Strength SCC (고강도 고유동 콘크리트의 침식 저항성)

  • Choi, Sok-Hwan;Lee, Jae-Moon;Han, Man-Yop;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.205-208
    • /
    • 2006
  • Damage of hydraulic concrete structures by the abrasion and erosion process is very severe and it indicates that the necessity of considering the influence of this process while designing concrete mixtures. Abrasion wear of concrete in hydraulic structures is caused by the movement of particles, water-borne debris. The resistance against erosion for high-strength self-consolidating concrete(SCC) was examined in this paper. A newly designed testing method is presented in order to quantitatively estimate the erosion of concrete. It was shown that loss of volume in abraded concrete can be explained as function of material parameters such as the amount of fly ash and blast furnace slag. Those admixtures have been widely used to reduce heat of hydration and improve resistance against sulfate attack. The results of current study can be used as a guideline in selecting the composition of concrete exposed to abrasion-wear.

  • PDF

Fundamental study on the strength and durability of ternary blended cement concrete (3성분계 시멘트콘크리트의 강도 및 내구특성에 대한 기초적 연구)

  • Lee, Seung-Tae;Lee, Seung-Heun;Kim, Dae-Seong;Kim, Do-Gyun;Seo, Chang-Won;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.343-344
    • /
    • 2009
  • Compressive strength and chloride ions permeability measurements of ternary blended cement concretes incorporating ground granulated blast-furnace slag and fly ash were performed From a result of this study, it was found that there may be not a linear relationship between compressive strength and durability of ternary blended cement concretes.

  • PDF

A Study on the Sound Characteristic of Insulation and Manufacturing of Lightweight Concrete for Wall System (벽체용 경량 콘크리트의 제조 및 흡차음 특성에 관한 연구)

  • Kim, Hong-Yong;Kim, Soon-Ho
    • KIEAE Journal
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • This paper deals with the experimental for manufacturing the lightweight buildng materials with portland cement, fly ash, slag, lime, gypsum, and aluminum powder system. Aluminum powder was added an aerating agent. Specific gravity range of lightweight concrete specimens were 0.6~0.9g/cm3. These specimens properties studied by means of specific gravity, compressive strength, absorption coefficient, transmission loss and scanning electron microscopy. Cellular concrete with maximum compressive strength was 41kgf/cm2 by obtained Al=0.05wt.%. Moreover, the aeration lightweight concrete showed excellent sound absorption properties.

Rheological Properties of Cement Using Admixtures (혼합재를 첨가한 시멘트의 레올로지 특성)

  • 양승규;이웅종;김동석;정연식;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.271-276
    • /
    • 2003
  • This study is about the rheological properties of cement slurry using admixtures. The variables are the type of cement(Type I, II, IV, V) and the substitution ratio of admixtures such as fly ash and slag. As a result of measuring the fluidity of various types of cement slurry at the early stage, type 2, type 4 and type 5 showed the similar property. The fluidity of type 1 and ternary blended cement was low. it is thought that it is because of the high $C_3$A content. The cement slurries containing mineral admixtures were superior in the property of fluidity retention.

  • PDF

A Study on the Strength Prediction of Three-Component Concrete by Maturity Method (적산온도 기법을 활용한 3성분계 콘크리트의 강동예측에 관한 연구)

  • 장종호;김영덕;길배수;김정일;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.237-242
    • /
    • 2003
  • The object of this study is to investigate the strength development properties and the strength prediction of three-component concrete using the fly ash and the blast-furnace slag by a maturity method. The results were as follows. The values of the activation energy on this experiment are calculated as 38.69, 36.47, 32.46, 30.99 KJ/mol in the W/B 60, 55, 50, 45%. And it is considered that the equivalent age can be used to predict strength of the three-component concrete in the optional age. Also the strength of the three-component concrete can be predicted from the result of high correlation between predicted strength and measured strength.

  • PDF

A Study on the Estimation Method of Concrete Compressive Strength Based on Machine Learning Algorithm Considering Mixture Factor (배합 인자를 고려한 Machine Learning Algorithm 기반 콘크리트 압축강도 추정 기법에 관한 연구)

  • Lee, Seung-Jun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.152-153
    • /
    • 2017
  • In the construction site, it is necessary to estimate the compressive strength of concrete in order to adjust the demolding time of the form, and establish and adjust the construction schedule. The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, six influential factors (Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know the various correlations among data and the tendency of data. After using algorithm of various methods of machine learning techniques, we selected the most suitable regression analysis model for estimating the compressive strength.

  • PDF