• Title/Summary/Keyword: fly

Search Result 3,136, Processing Time 0.029 seconds

Evaluation of the hydration heat and strength progress of cement-fly ash binary composite

  • Xiao-Yong Wang
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.6
    • /
    • pp.622-631
    • /
    • 2020
  • Fly ash is an industry by-product of thermal power factories that is broadly utilized in the concrete industry. This research shows a framework for evaluating the hydration heat, reaction amount, and strength progress of cement-fly ash binary composite. First, we conducted an experiment to study the isothermal hydration heat of fly ash composite paste with assorted fly ash contents and temperatures. According to the experimental outcomes of cumulative hydration heat, the coefficients of a kinetic reaction model of fly ash were determined. Furthermore, the reaction amount of fly ash was calculated using a fly ash reaction model. We discovered that the reaction of fly ash is considerably improved at elevated temperatures. The reaction amount of fly ash decreases with the growing content of fly ash. Second, in line with the reaction amount of fly ash and cement, we developed a straight-line equation for evaluating the strength progress of binary composite. The strength progress model applies to a number of water-to-binder ratios and fly ash substitution ratios. Summarily, the suggested hydration-heat-strength model is helpful for understanding the material style of fly ash concrete.

Fundamental Study on Evaluation method of Activity Factor of Fly Ash (플라이애시의 활성도지수 평가에 관한 기초적 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.

Effect of fineness of high lime fly ash on pozzolanic reactivity and ASR mitigation

  • Afshinnia, Kaveh;Rangaraju, Prasada R.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2017
  • Typically, high lime fly ash (Class C) has been characterized as a fly ash, which at lower replacement levels is not as effective as the low lime (Class F) fly ash, in mitigating alkali-silica reaction (ASR) in portland cement concrete. The influence of fineness of Class C, obtained by grinding virgin fly ash into finer particles, on its pozzolanic reactivity and ASR mitigation performance was investigated in this study. In order to assess the pozzolanic reactivity of mortar mixtures containing virgin or ground fly ashes, the strength activity index (SAI) test and thermo-gravimetric analysis (TGA) were conducted on the mortar cubes and paste samples, respectively, containing virgin fly ash or two ground fly ashes. In addition, to evaluate any improvement in the ASR mitigation of ground fly ashes compared to that of the virgin fly ash, the accelerated mortar bar test (AMBT) was conducted on the mortar mixtures containing different dosages of either virgin or ground fly ashes. In all tests crushed glass aggregate was used as a highly reactive aggregate. Results from this study showed that the finest fly ash (i.e., with an average particle size of 3.1 microns) could increase the flow ability along with the pozzolanic reactivity of the mortar mixture. However, results from this study suggested that the fineness of high lime fly ash does not seem to have any significant effect on ASR mitigation.

Sequential Extraction을 이용한 Fly ash의 Cd 흡착 양상 평가

  • 이광헌;이승학;이아라;명동일;박준범;김형석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.376-379
    • /
    • 2004
  • pH has been regarded as a master variable governing the heavy metal sorption on fly ash. However, the chemical constituents in the fly ash could also suggest a potential sorption site for heavy metals. So, in this study sequential extraction method is employed to evaluate the sorption behavior of fly ash for cadmium. Two different fly ashes (S-fly ash, T-fly ash) were obtained from different power plants in Korea. First, cadmium is adsorbed under four different initial pHs. And, Cd sorbed in fly ash was sequentially desorbed following the sequential extraction method suggested by Tessier. In test results, the effect of pH increase was differently exerted in two fly ash. In S-fly ash, exchangeable fraction was dominated in low initial pH, however, as increasing initial pH, the fraction bound to carbonate increased. In the T-fly ash, regardless of initial pH the fraction bound to carbonate was major part of sorption estimated. The fraction bound to Fe/Mn oxide was about 10% in T-fly ash, and 5% in S-fly ash at high pH.

  • PDF

Geotechnical Properties of Clay-Fly Ash Mixtures (점토-플라이 애시 혼합물의 지반공학적 특성)

  • Kwon , Moo-Nam;Chung , Sung-Wook;Lee, Sang-Ho;Goo , Jung-Min;Kim , Hyun-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.99-106
    • /
    • 2004
  • Although fly ash has possesses viable engineering properties, an overwhelming majority of fly ash from coal combustion is still placed in storage or disposal sites. This study was undertaken to investigate the physical and mechanical properties of clay-fly ash mixture and to furnish engineering data when fly ash utilized as engineering materials. This paper includes geotechnical properties of fly ash, clay-fly ash mixtures and results of compaction test, unconfined strength test, direct shear test, leaching test and stability analysis of clay-fly ash bank slope. If proper amount of fly ash was put in clay, the clay-fly ash mixture has an increase of unconfined strength and stability of bank slope.

Effect of fly ash on the physico-chemical properties (Fly Ash가 토양(土壤)의 물화학성(物化學性)에 미치는 영향(影響))

  • Park, Man;Hur, Nam-Ho;Choi, Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.133-137
    • /
    • 1991
  • The inorganic constituents in flay ash such as Ca, Mg, Al and Si were extracted by water and 0.5N-Acetic acid, and changes of the physical properties of the fly ash-treated soils were examined to find out the effect of fly ash on the chemical and physical properties of the soils. The dominant day minerals of fly ash were quartz and mullite. More inorganic constituents were extracted from the fly ash by acetic acid than by water. Si and A1 in fly ash were hardly extracted by water. Addition of fly ash to soil below 10%(W/W) caused improvement in the water permeability and the field moisture capacity of the soil, but did not influence the shrinkage and hardness of the soil. Therefore, it was apparent that the effect of the fly ash on the chemical and physical properties of the soils greatly dependedon soil reaction, the organic acid contents, and the amount of fly ash used in treatment.

  • PDF

Pozzolanic reaction of classified fly ash (분급 플라이애쉬의 포졸란반응 특성)

  • Lee, Seung-Heun;Hwang, Hae-Jeong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.753-756
    • /
    • 2006
  • This paper discussed pozzolanic reaction properties of classified fly ashes by using of electrostatic precipitator. Blaine values of fly ashes at hoppers are respectively about 3000(ordinary), 5000(fine) and 8000cm2/g(super-fine). The pozzolanic reactivity of fly ash at early stage and at later stage are respectively related to the related to the fineness and the glass content of fly ash. But the early hydration of cement was retarded by addition of super fine fly ashes. the adiabatic temperature rise of mortar containing fly ash is increased with the fineness of fly ashes.

  • PDF

Experimental and SEM Analyses of Ground Fly Ash in Concrete

  • Brueggen, Beth;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.51-54
    • /
    • 2010
  • Fly ash is used in concrete to improve the fresh and hardened properties of concrete, including workability, initial hydration temperature, ultimate strength and durability. A primary limitation on the use of large quantities of fly ash in blended cement concrete is its slow rate of strength gain. Prior studies investigated the effects of grinding fly ash and fly ash fineness on the performance of concrete containing fly ash. This study aims to discover the sources of those effects, to verify the compressive strength behavior of concrete made with raw and processed Class C fly ash, and to investigate the properties of fly ash particles at the microscopic level. Concrete cylinder test results indicate that grinding fly ash can significantly benefit the early age strength as well as the ultimate strength of concrete with ground fly ash. Therefore, it is demonstrated that grinding fly ash increases its reactivity. Scanning Electron Microscopy was then used to investigate the physical effects of the grinding process on the fly ash particles in order to identify the mechanism by which grinding leads to improved concrete properties.

Civil Aircraft Digital Fly-By-Wire System Technology Development Trend (민간항공기 디지털 Fly-By-Wire 시스템 기술 개발 동향)

  • Kim, Eung-Tai;Chang, Jae-Won;Choi, Hyoung-Sik;Lee, Sug-Chon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 2009
  • The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type. In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed.

  • PDF

The Analysis of Slope Stability on Clay-Fly Ash Mixtures Embankment (점토-Fly Ash 혼합물로 된 제체의 사면안정 해석(지반공학))

  • 권무남;정성욱;김현기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.477-483
    • /
    • 2000
  • Fly ash is the unburned residue resulting from the combustion of coal in utility and industrial boilers such as thermal power plants. Annually about 5 million tons of fly ash is being produced in korea. Less than 25 percent of total volume of fly ash is currently being used effectively for some ways. In the future, the volume of fly ash discharge from thermal power stations will be increasing more and more, and the development of the utilization of high volume fly ash is required. Fly ash has a lower compacted density and specific gravity than coarse grained natural aggregates but equivalent strength properties indicating that the fly ash could be used as a structural fill materials. So, clay-fly ash mixtures can be used as a fill material in the construction of embankments. Laboratory tests have been carried out to determine the physical, chemical, and geotechnical characteristics of the clay and fly ash. The fly ash is mixed with the clay in different proportions and the geotechnical characteristics of the mixtures have been studied also. In this study describes the results of the experimental study. The implications of the use of clay and clay-fly ash mixtures on the stability of embankments are discussed.

  • PDF