• Title/Summary/Keyword: flux-reversal machine

Search Result 16, Processing Time 0.028 seconds

Convergence Comparison of Linear Oscillating Electric Machines (리니어 오실레이팅 전기기기의 비교 연구)

  • Jeong, Sung-In;Eom, Sang In
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.273-280
    • /
    • 2021
  • This paper presents the results of study of linear oscillating electric machine; Cartesian, cylindrical type with permanent magnet, flux reversal, cylindrical reluctance, and transverse flux type. The focus of the work is the suggestion of the characteristics and design process of propose topology, respectively. First of all, there are five types of the proposed to this study on the basis of the existing literatures; Cartesian type, cylindrical type, flux reversal type, cylindrical reluctance type, and transverse flux type. All topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. Cartesian type is investigated by number of phases and number of pole pairs using optimal process. A cylindrical type is described by number of phases and displacement of stroke. The flux reversal type is proposed based on the symmetrical and non symmetrical stator cores of the surface mounted PMs mover, and non slanted PMs and slanted PMs of the flux concentrating PMs mover. A cylindrical reluctance type is studied by the shape of mover teeth in geometric aspect to reduce force ripple and increase magnetic flux. A transverse flux type is considered by dividing the transverse flux electric excited and the transverse flux permanent magnet excited. It is significant that the study gives a design rules and features of linear oscillating electric machine.

The Study of Two Phase SRM with No-Flux Reversal in the Stator (고정자에서 자속의 교번이 없는 2상 SRM의 특성에 관한 연구)

  • Oh, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.31-33
    • /
    • 2007
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with design, analysis, and simulation of such a novel two phase SRM. A novel two phase SRM has high performance, self-starting capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM). Experimental verification of the machine design is provided to correlate with analysis and simulation studies.

  • PDF

Study on the Recoil Operation of the Servomotor with PM Poles (PM형 제어용 Servo전동기의 Recoil동작에 관한 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 1972
  • For the conventional DC machine, the armature MMF is negligible compared with field MMF except when the machine is under heavy load or transient conditions. During the motor starting or reversal, the transient armature current and corresponding MMF effect the flux density of each pole in the machine magnetic circuit. However, the circuit flux density is restored to normal values by the field winding MMF after the transient armature current dies in an electromagnetic DC motor. Permanent magnet servomotor have no field windings about the circuit poles to restore circuit flux density through the demagnetized part of each pole after the transient armature MMF dies, and portions of the magnetic circuit stay permanently demagnetized. Thus the problem of stabilizing a magnet pole piece under the influence of the transient armature current need attentions. This work present the recoil operation of the servomotor with PM poles in conjunctions with the influence of the armature reaction effect. The development of an analytical and quantatative study is presented for predicting the regime of the recoil operation under this condition.

  • PDF

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.

A Study on the Comparison of SRMs with 3 Rotor Poles (3개의 회전자 극을 갖는 SRM의 비교 연구)

  • Bae, Jun-Kyung;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

Performance Comparison of Conventional and Segmental Rotor Type Switched Reluctance Motor

  • Jeong, Kwang-Il;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1138-1146
    • /
    • 2018
  • Performance comparisons of switched reluctance motor for cooling fan application are dealt in this paper. Conventional and novel segmental type motors with the same dimension are compared. The conventional 12/8 type is very popular and used widely. The structure of segmental rotor type motor is constructed from a series of discrete segments, and the stator is constructed from two types of stator poles: exciting and auxiliary poles. This type of motor has short flux path and no flux reversal in the stator. The auxiliary poles are not wound by the windings and only provide the flux return path. Compared with conventional SRM, the segmental structure increases electrical utilization of the machine and decreases core losses, which leads to higher efficiency. To verify the segmental structure, finite element method (FEM) is employed to get static and dynamic characteristics of both SRMs. Finally, the prototypes of conventional and segmental SRMs are tested for characteristics comparisons.