• Title/Summary/Keyword: flux noise

Search Result 261, Processing Time 0.025 seconds

A Study of Torque Ripple Minimization and Maximum Torque Control for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 IPMSM의 토크리플 저감과 최대토크 제어에 관한 연구)

  • Hong In-Pyo;Lee Sang-Hun;Choi Cheol;Kim Jang-Mok;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.142-145
    • /
    • 2001
  • In this paper the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor) is analyzed. If flux distributions in the motor are not sinusoidal, a sinusoidal current produces important torque ripple. Torque ripple causes vibration and noise of motors. The optimized current waveforms for ripple free is able to be obtained by analysis of Back-EMF and torque equation. The method to find the optimal current is based on numerical predetermination. In this paper proposes current waveform which can eliminate the torque ripple, and the validity is verified through the simulation.

  • PDF

Torque Ripple Minimization in Switched Reluctance Motor Drives Considering Magnetic Saturation (자기포화를 고려한 SRM의 토크리플 저감 제어)

  • Kang, Junho;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.48-54
    • /
    • 2014
  • This paper discusses study of torque ripple minimization employing an improved TDF(torque distribution function)-based instantaneous torque control to reduce acoustic noise and vibration problem of the SRM. As the flux linkage of the SRM is a nonlinear function of phase current and rotor position, design of optimal controller for the SRM is quite complicated. Hence, an accurate mathematical model considering the nonlinearity of the SRM is required. An improved TDF based torque control has been proposed in order to reduce the toque ripple at high speed operation. Dynamic simulation using Matlab/Simulink as well as Finite Element Analysis is presented. A prototype SRM for electric vehicle traction has been manufactured to validate the experimental results comparing the dynamic simulation results.

Analysis of Resultant Harmonic Field Density in Air Gap for Ratio Teeth Pitch vs Slot Width (치절(teeth pitch)과 슬롯폭의 비에 의한 공극의 합성고조파밀도해석)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum;Lim, Jae-Il;Kim, Sung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.171-173
    • /
    • 1995
  • Slot field harmonics exist in air gap due to inevitable slot constructure of induction motors. They give rise to noise by the electromagnetic vibration and mechanical pulsation. We calculate the slot field harmonics for varying the ratio of slot width vs teeth pitch using the carter's coefficent. We computate the flux density in air gap by FEM(Finite Element Method) and analyze it in frequency domain using DFT(Discrete Fourier Transform). We develop the new algorithm mixing FEM with DFT.

  • PDF

to examine of management standard by the harmonics measured and analyzed in 22.9kV Power lines (22.9kV 수용가 전력계통별 고조파 발생실태 및 관리기준 조사분석)

  • Lee Eun Chun;Shin Gang Wook;Hong Sung Taek;Hong Young Jae;Park Young Chun;Lim Jae Il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.270-272
    • /
    • 2004
  • At the water supply field, high voltage induction motor is main facility of a load equipment. The motor is often out of order and its noise, generated heat, loss etc occurred occasionally. especially, transmission motor for flux control generates an amount of the harmonics then have a bad influence upon the electric power system. In this study, to analyze the total harmonics distortion of the water supply field receiving high voltage, the harmonics measured and analyzed using the PQA(Power quality Analyzer) according to the electric power system and electrical load and the reduction method presented.

  • PDF

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Design and Performance Analysis of Current Source for 3.0T MREIT System (3.0T MREIT 시스템을 위한 정전류원의 설계 및 성능검증)

  • 김규식;오동인;백상민;오석훈;우응제;이수열;이정한
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2004
  • In Magnetic Resonance Electrical Impedance Tomography (MREIT), we inject current through electrodes placed on the surface of a subject and measure the induced magnetic flux density distribution using an MRI scanner. This requires a constant current source whose output pulses are synchronized with MR pulse sequences. In this paper, we present a design and performance analysis of a current source used in a 3.0T MREIT system. The developed current source was tested using a saline phantom. We found that its performance is satisfactory for the current MREIT system. We suggest future improvements for better SNR(signal-to-noise ratio).

Development of Radio Spectrum Monitor for HF Communication (단파 스펙트럼 수신 모니터링 시스템 개발)

  • Park, Sung Won;Kim, Young Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.821-827
    • /
    • 2015
  • Electromagnetic waves which are emitted from the Sun due to solar flare explosion can cause failures in HF radio communications in the day-side area of the Earth, that is so-call as Radio Blackouts. The international scale representing the severity of the Radio Blackouts is determined by the solar X-ray flux which is measured by United States Geostationary Operational Environmental Satellite. However, the scale is not always applicable to HF communication users in the different area on the Earth, because the HF communication effects depend not only on the X-ray strength but also on the subsolar point location. To solve this problem, we developed a HF radio spectrum monitoring system utilizing a spectrum analyzer. This system conducts a real-time measure of the HF spectrum, and automatically calculates signal to noise ratios and the occurrences of the HF blackouts as comparing with the interference level which is described from the ITU recommendation.

A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging

  • Hernandez, Daniel;Kim, Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.95-122
    • /
    • 2020
  • In this article, we evaluated the performance of radiofrequency (RF) coils in terms of the signal-to-noise ratio (S/N) and homogeneity of magnetic resonance images when used for ultrahigh-frequency (UHF) 7T magnetic resonance imaging (MRI). High-quality MRI can be obtained when these two basic requirements are met. However, because of the dielectric effect, 7T magnetic resonance imaging still produces essentially a non-uniform magnetic flux (|B1|) density distribution. In general, heterogeneous and homogeneous RF coils may be designed using electromagnetic (EM) modeling. Heterogeneous coils, which are surface coils, are used in consideration of scalability in the |B1| region with a high S/N as multichannel loop coils rather than selecting a single loop. Loop coils are considered state of the art for their simplicity yet effective |B1|-field distribution and intensity. In addition, combining multiple loop coils allows phase arrays (PA). PA coils have gained great interest for use in receiving signals because of parallel imaging (PI) techniques, such as sensitivity encoding (SENSE) and generalized autocalibrating partial parallel acquisition (GRAPPA), which drastically reduce the acquisition time. With the introduction of a parallel transmit coil (pTx) system, a form of transceiver loop arrays has also been proposed. In this article, we discussed the applications and proposed designs of loop coils. RF homogeneous coils for volume imaging include Alderman-Grant resonators, birdcage coils, saddle coils, traveling wave coils, transmission line arrays, composite right-/left-handed arrays, and fusion coils. In this article, we also discussed the basic operation, design, and applications of these coils.

The characteristics of DROS magnetometer and MCG measurement (DROS 자력계의 동작특성 및 심자도 측정)

  • Kang, C.S.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.

  • PDF