• Title/Summary/Keyword: flux loss

Search Result 484, Processing Time 0.03 seconds

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

AC Loss Measurement and Analysis of Ag-sheathed Bi-2223 Conductors in Terms of Eddy Currents and Flux Creep

  • Jang, Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.211-215
    • /
    • 2003
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb] : Sr : Ca : Cu :O = 2:2:2:3) tapes [one untwisted (Tape I, twist-pitch of $\infty$ mm) and the other with a twist-pitch of 8mm (Tape II) ] were measured and compared. These samples, produced by the powder-in-tube (PIT) method, are multi-filamentary and have a Ag/Au and Ag matrix, respectively. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation.

Analysis of Magnetic Field Behavior and Iron Loss in Stator Core of Permanent Magnet Type Motor (영구자석형 모터의 고정자 철심에서 자계의 거동 및 철손 분석)

  • Ha Kyung-Ho;Cha Sang-Yoon;Kim Jae-Kwan;Hong Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • This paper investigates the magnetic field behavior and its iron losses in the stator core using electrical steels. The analysis model is a brushless motor with the permanent magnet. The elliptical rotating and alternating flux distributions with non-sinusoidal waveform are obtained by Finite Element Method and then their harmonic components are extracted. Based on these results, the local iron losses in the stator core caused by the harmonic flux are calculated. And then this paper explains the relation between flux waveform and iron loss produced in each part of the stator core. Furthermore, the iron loss at no load condition is measured and compared with the analysis results.

Estimation Iron Loss Coefficients and Iron Loss Calculation of IPMSM According to Core Material (철심 재질에 따른 철손 계수 산정 및 IPMSM의 철손 계산)

  • Kang, Bo-Han;Kim, Yong-Tae;Cho, Gyu-Won;Lee, Jung-Gyu;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1269-1274
    • /
    • 2012
  • In this paper, the iron loss was calculated using estimated iron loss coefficient at 650W Interior Permanent Magnet Synchronous Motor(IPMSM) and 250W IPMSM. The iron loss coefficients was estimated different according to electrical steel material used to stator and rotor core in motor. Aspect of The rotating flux field and alternating flux field was confirmed by magnetic field behavior and harmonic analysis in stator core, the iron loss was calculated using flux density by Finite Element Method(FEM) and estimated coefficients by iron loss coefficient estimation proposed in this paper. The iron loss experiment was performed for verified to iron loss calculation, and the iron loss coefficients were verified by comparison of iron loss calculation value and experimental value.

The Effect of the Processing Conditions on the Magnetics Properties of Mn-Zn ferrite (제조공정에 따른 Mn-Zn 페라이트의 전자기적 특성변화)

  • 김종령;이해연;김현식;오영우;민복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.905-908
    • /
    • 2001
  • The microstructure and the magnetic properties of Mn-Zn ferrite, which were power loss and saturation magnetic flux density, were investigated as the function of the process before firing. The highest initial permeability and the lowest power loss were attained to the specimen with CaO 400 ppm as a resulted from the highest solubility to SiO$_2$and the creation of liquid phase which improved sintering. The biggest grain size, the highest saturation magnetic flux density and the lowest power loss, which was resulted from that the eddy current loss increased as grain size increased but the hysteresis loss much more decreased and the hysteresis loss strongly influenced on the total power loss rather than the eddy current loss, were obtained to the Mn-Zn ferrite added 2wt% PVA. The power loss was lowest and the saturation magnetic flux density was highest in case of 1 ton/$\textrm{cm}^2$ and the grain size was not influenced.

  • PDF

A Study on the Selection of Core Materials in Motors according to Operating Speed Range (전동기 주 운전 영역에 따른 코어 재질 선정에 관한 연구)

  • Lee, Byeong-Hwa;Lee, Sang-Ho;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.791-792
    • /
    • 2006
  • In motor design, an important factor is the content of silicon in coss material, which can effect the saturation of magnetic circuit and coss loss. While the content of silicon is high, the core loss will be reduced. At the same time, in order to assure the effective flux, the magnetizing current must be increased and then the copper loss becomes higher. Therefore the material with high content of silicon, which is used in the motor, can not always give the high efficiency. In this paper flux linkage of two different material s10 and s60 is compared according to the operating region and then exciting current to obtain same flux is estimated. By comparing core loss and copper loss between two material with the estimated current and flux linkage, this paper presents a criterion in determining the material for higher efficiency

  • PDF

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Iron Loss Analysis of Transverse Flux Linear Motor using Solid type Yoke (Solid type 요크를 사용하는 횡자속 전동기의 철손해석)

  • Lee Ji-Young;Hong Jung-Pyo;Chang Jung-Hwan;Kang Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1055-1057
    • /
    • 2004
  • This paper deals with a qualitative analysis of iron loss in Transverse Flux Linear Motor (TFLM). 3D equivalent magnetic circuit network method (EMCNM) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of an optional material. The results of iron loss analysis can be used as a criterion to decide the manufactural shape such as lamination or solid type core, skew position, etc.

  • PDF

Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube (마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성)

  • 장세환;정시영;홍영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • Hwang, Jung-A;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eun-Jin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF