• Title/Summary/Keyword: flux estimator

Search Result 125, Processing Time 0.036 seconds

SENSORLESS SPEED CONTROL OF INDUCTION MOTOR WITH SPEED ESTIMATOR (자속추정기에 의한 유도전동기 센서리스 속도제어)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.432-439
    • /
    • 1999
  • Several methods of induction motor drives which used speed estimators instead of shaft encoders have been reported. However those speed sensorless systems with estimators employing stator voltates and currents usually deteriorates as the speed gets lower because it is difficult to calculate the accurate rotor flux under the influence of DC-offset and saturation of integrators. In this paper to calculate rotor flux at low speed the new rotor flux estimator which replaces integra-tors with two lag circuits is proposed. Simulation and experiment results confirm the validity of this control scheme.

  • PDF

A MRAS Speed and Stator Flux Linkage Estimator for Permanent Magnet Synchronous Motor drives with parameter identification (파라미터 산정과 영구자석 동기전동기 제어를 위한 MRAS Speed 와 Stator Flux Linkage 추정량)

  • Lin, Hai;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.830-831
    • /
    • 2011
  • The paper makes an investigation on a speed and stator flux linkage estimator for permanent magnet synchronous motor (PMSM) sensorless drives using the technology of model reference adaptive system (MRAS). The designed estimator including two models and two adaptive estimating laws is proved to be stable by the Popov hyper-stability theory. The speed, the stator flux linkage and the resistance are estimated accurately by the proposed estimator while overcoming the shortcoming of the traditional one. The experiment results demonstrate its effectiveness.

  • PDF

Sensorless Vector Control of Induction Motor Using Closed loop Flux Estimator (폐루프 자속추정기를 이용한 유도전동기의 센서리스 벡터제어)

  • 서영수;임영배;음두성;이상훈
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.217-220
    • /
    • 1998
  • In this paper, for high performance as drive, in the speed sensorless vector control of induction motor, introduced flux estimator of voltage model and error compensation algorithm using closed loop integration method, and then we proposed a improved flux estimation method of high accuracy. And the rotor speed is estimating using the stator current and the estimated flux, it is used speed information. The proposed scheme is verified through digital simulations and experiments for 3.7[kW] induction motor and shows good dynamic performance.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Comparison Study of On-line Rotor Resistance Estimators based on Alternate QD Model and Classical QD Model for Induction Motor Drives (유도전동기 드라이브에서의 대안모델과 일반표준모델에 기반한온라인 회전자저항 추정기의 성능 비교 연구)

  • Kwon, Chun-Ki;Kim, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Most of rotor resistance estimators utilizes Classical qd Model (CQDM) and Alternate qd Model (AQDM). The rotor resistance estimators based on both models were shown to provide an accurate rotor resistance estimate under conditions where flux is constant such as a field-oriented control (FOC) based induction motor drives. Under the conditions where flux is varying such as a Maximum torque per amp (MTPA) control, AQDM based rotor resistance estimator estimates actual rotor resistance accurately even in different operating points. However, CQDM based rotor resistance estimator has not been investigated and its performance is questionable under condition where flux level is varying. Thus, in this work, the performance of CQDM based rotor resistance estimator was investigated and made comparisons with AQDM based estimator under conditions where flux level is significantly varying such as in MTPA control based induction motor drives. Unlike AQDM based estimator, the laboratory results show that the CQDM based estimator underestimates actual rotor resistance and exhibits an undesirable dip in the estimates in different operating points.

Performance Improvement of Sensorless Control of IPMSM using Active Flux Concept by Improved Current Estimators (유효 자속 개념을 이용한 IPMSM 센서리스 제어의 전류 추정기에 의한 성능개선)

  • Lee, Sung-Joon;Kim, Tae-Wan;Kim, Won-Seok;Kim, Marn-Go;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.587-592
    • /
    • 2013
  • In this paper, the performance improvement of the sensorless control of IPMSM employing the active flux concept by the improved current estimator is presented. The accuracy of the current estimator used in a previous report is degraded when the motor parameters are not known exactly. A simple current estimator derived from estimated flux is proposed to improve the position estimation performance. In order to show the usefulness of the proposed estimation method, the simulation results using Matlab/Simulink and the experiment results are presented.

A Study on Speed Control by means of voltage·current model complex flux estimator (유도전동기의 전압·전류 모델 합성 자속 추정기에 의한 속도제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Song Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5416-5426
    • /
    • 2012
  • This study uses the algorithm which estimates the magnetic flux using different models in the low speed driving area and the high speed driving area by the voltage-current model synthesis magnetic flux Estimator and, from this result, estimates the magnetic flux angle to achieve the stable speed control through all the areas from the low speed to the high speed drive. In particular, the current change and the magnetic flux change under variable load were estimated in real time in the low speed area and this made the control characteristic improved in the low speed area. According to this, even under variable load, the more stable simulation and experiment could have been completed using PI current controller and PI flux controller in all the areas. As a result, the outstanding speed control characteristic has been achieved.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

Reduction of Torque Ripple of PMSM Using Iterative Flux Estimation

  • Lee D. H.;Kim C. H.;Kwon Y. A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.346-350
    • /
    • 2001
  • PMSM drives are widely used in the industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method interatively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF