• Title/Summary/Keyword: flux data quality

Search Result 176, Processing Time 0.031 seconds

Quality Control and Assurance of Eddy Covariance Data at the Two KoFlux Sites (KoFlux 관측지에서 에디 공분산 자료의 품질관리 및 보증)

  • Kwon, Hyo-Jung;Park, Sung-Bin;Kang, Min-Seok;Yoo, Jae-Il;Yuan, Renmin;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.260-267
    • /
    • 2007
  • This research note introduces the procedure of the quality control and quality assurance applied to the eddy covariance data collected at the two KoFlux sites (i.e., Gwangneung forest and Haenam farmland). The quality control was conducted through several steps based on micrometeorological theories and statistical tests. The data quality was determined at each step of the quality control procedure and was denoted by five different quality flags. The programs, which were used to perform the quality control, and the quality assessed data are available at KoFlux website (http://www.koflux.org/).

An Experimental study on R-22 Evaporation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 증발에 관한 실험적 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Jong-Won;Jeong, Ho-Jong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.96-103
    • /
    • 2000
  • In this study, evaporation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables ; vapor quality $(0.1{\sim}0.9)$, mass flux$(100{\sim}600kg/m^2s)$ and heat flux$(5{\sim}15kW/m^2)$. The micro-tin tube showed higher heat transfer coefficients compared with those of the smooth tube. Results showed that, for the smooth tube, the effects of mass flux, quality and heat flux were not prominent, and existing correlations overpredicted the data. For the micro-fin tube at low quality, the heat transfer coefficient increased as heat flux increased. However, the trend was reversed at high quality Kandlikar's correlation predicted the low mass flux data, and Shah's correlation predicted the high mass flux data. The heat transfer coefficient of the micro fin tube was approximately two times larger than that of the plain tube. New correlation was developed based on present data.

  • PDF

R-22 Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 응축에 관한 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

Flux Footprint Climatology and Data Quality at Dasan Station in the Arctic (북극 다산기지에서의 플럭스 발자취 기후도와 플럭스 자료 품질)

  • Lee, Bang-Yong;Choi, Tae-Jin;Lee, Hee-Choon;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.201-205
    • /
    • 2005
  • Turbulent fluxes of heat, water vapor, and CO2 have been measured since August, 2003 at Dasan Station (78o 55’ N, 11o50’E) in the Arctic. These data can allow us to better understand the interactions between the Polar ecosystems and the atmosphere together with those at King Sejong Station in the Antarctic. Due to the buildings and measurement platforms around the flux tower, it is required to evaluate how they influence measured flux data. By using one-year turbulence statistics data and footprint model, flux footprint climatology was analyzed together with data availability. The upwind distance of source area ranged from 150 to 300 m, where the buildings and measurement platforms existed. However, flow distortion due to them may be not a major factor to reduce the data availability significantly. Based on, the dominant wind direction of SW and footprint climatology, the location of flux tower is considered suitable for flux measurement.

  • PDF

Effect on Boiling Bleat Transfer of Horizontal Micro-channel Diameters for R-22 and R-407C (수평미세관의 직경이 R-22 및 R-407C 비등열전달에 미치는 영향)

  • Yoon, Kuk-Young;Choi, Kwang-Il;Oh, Jong-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • Boiling heat transfer coefficients and pressure drops for R-22 and R-407C were measured in horizontal micro-channels. The test section is stainless steel tube, inner tube diameters are 1.8mm and 2.8mm, and the respective lengths are 1500mm and 3000mm. The range of mass flux is 300-600kg/$m^2$s and heat flux is 5-15kW/$m^2$. In this results, pressure drop increased linearly for both R-22 and R-407C with increased mass flux, but the increase of heat flux did not affect the pressure. In addition, the pressure drop was fairly increased in the high quality region rather than low quality region. In the range of low quality, the mass flux had a small affect on the heat transfer coefficients, however, in high quality region, the heat transfer coefficients increased even more with increasing mass flux. Under the low quality region and low mass flux, the heat transfer coefficients increased with increasing heat flux densities. The effects of inner tube diameter were clearly observed. Namely, the measured pressure drop inside inner tube diameter 1.8 mm is higher than 2.8 mm with increasing the mass flux and heat flux. Also, the measured local heat transfer coefficient inside inner tube diameter 1.8 mm is higher than 2.8 mm in the range of high qualities. The experimental data for R-407C compared with proposed correlation using pure refrigerant. The experimental data for R-407C was more decreased than the proposed correlation for pure refrigerant up to 50% or more.

Experimental Investigation on Flow Boiling of R-22 in a Alumium Extruded Tube (알루미늄 다채널 압출관 내 R-22 대류 비등에 관한 실험 연구)

  • Sim, Yong-Sup;Min, Chang-Keun;Lee, Eung-Ryul;Sin, Tae-Ryong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1340-1345
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$ . The test range covered mass flux from 200 to 600 $kg/m^2s$, heat flux from 5 to 15 $kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$ . The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.

  • PDF

Flow Boiling Heat Transfer of R-22 in a Flat Extruded Aluminum Multi-Port Tube

  • Kim Nae-Hyun;Sim Yang-Sup;Min Chang-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^{2}s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C\;to\;15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations un-derpredict the low mass flux and overpredict the high mass flux data.

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

Meteorological Data Integrity for Environmental Impact Assessment in Yongdam Catchment (용담댐시험유역 환경영향평가의 신뢰수준 향상을 위한 기상자료의 품질검정)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.981-988
    • /
    • 2020
  • This study presents meteorological data integrity to improve environmental quality assessment in Yongdam catchment. The study examines both extreme ranges of meteorological data measurements and data reliability which include maximum and minimum temperature, relative humidity, dew point temperature, radiation, heat flux. There were some outliers and missing data from the measurements. In addition, the latent heat flux and sensible heat flux data were not reasonable and evapotranspiration data did not match at some points. The accuracy and consistency of data stored in a database for the study were secured from the data integrity. Users need to take caution when using meteorological data from the Yongdam catchment in the preparation of water resources planning, environmental impact assessment, and natural hazards analysis.

R-134a Flow Boiling on a Plain Tube Bundle (평활관군의 R-134a 흐름비등에 관한 연구)

  • 김종원;김정오;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from $8\;kg/m^2s$ to $26\;kg/m^2s$ and heat flux from $10\;kW/m^2s$ to $40\;kW/m^2s$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which satisfactorily () predicted the data. Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

  • PDF