• 제목/요약/키워드: flux angle

검색결과 508건 처리시간 0.034초

배리어 길이에 따른 매입형 영구자석 동기전동기의 Ld, Lq 특성 파라미터에 관한 연구 (Study on the Ld, Lq Characteristic Parameter of Interior Permanent Magnet Synchronous Motor in different barrier width)

  • 장익상;진창성;정대성;김승주;박재영;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.709-710
    • /
    • 2008
  • In this paper, we calculated permanent magnetic linkage flux ${\psi}_{\alpha}$ and Ld, Lq parameters of IPMSM and compared two model which has different barrier width. IPMSM has two kinds of torque that reluctance torque and magnetic torque. In constant torque region, using the Maxwell stress tensor method, we calculated the torque and current phase angle ${\beta}$ which has appeared maximum torque. In weakening flux region, we calculated the current phase angle ${\beta}$ which flux ${\psi}_o$ lower than limited flux ${\psi}_{omax}$. From the current phase angle ${\beta}$, we calculated torque by torque equation and compared two model characteristic.

  • PDF

속도센서 없는 유도전동기 자속기준제어를 위한 새로운 자속 연산기 (A Novel Flux Calculator for the Field Oriented Control of an Induction Motor without Speed Sensors)

  • 김경서
    • 전력전자학회논문지
    • /
    • 제3권2호
    • /
    • pp.125-130
    • /
    • 1998
  • 본 논문에서는 유도전동기 자속기준제어에 필요한 회전자 자속각 연산을 위한 새로운 자속 연산기를 제시한다. 순수 적분기로 구성된 자속연산기를 사용하여 전압, 전류 정보로부터 실제 회전자 자속을 추정하였다. 제안된 자속 연산기에서는 순수 적분기의 드리프트(drift) 문제를 해결하기 위한 새로운 보상 방법을 도입하였으며, 전동기 속도는 추정된 자속각과 추정된 슬립 주파수로부터 연산하였다. 제안된 방법의 성능을 실험을 통하여 입증하였다. 제안된 시스템의 정경속도의 1/100 이하에서도 안정되게 운전되는 것을 실험결과로부터 확인하였다.

Comparison of Heat Transfer in Both the Riser and Downcomer of a Circulating Fluidized Bed

  • Hassanein, Soubhi A.;Dahab, O.M.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2004
  • The characteristics of heat transfer from horizontal cylinder immersed in both a riser and downcomer of a circulating fluidized beds were investigated experimentally under different values of solids mass flux, superficial air velocity, particle size diameter, and different bed materials. The test results indicated that local heat transfer coefficients in both riser and downcomer are strongly influenced by angular position, and mass flux, as well as by particle size and bed materials. The local heat transfer coefficients around a circumference of the cylinder inside a riser and downcomer of a CFB exhibited a general tendency to increase with decreasing particle size and increasing solids mass flux and vary with different bed materials. Also the averaged heat transfer coefficient calculated from local heat transfer coefficient exhibited the same trend as a local i.e increase with decrease particle size and increasing solids mass flux and vary with varying bed materials. The general trend for a riser local heat transfer coefficient is decrease with increase angle until ${\Phi}$ = 0.5-0.6 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Also the general trend for a local heat transfer coefficient in downcomer is to increase with increase the angle until ${\Phi}$= ${\theta}/{\Pi}$ = 0.3-0.5 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Comparison the results of the heat transfer in the riser and downcomer of a circulating fluidized beds shows that they have approximately the same trend but the values of heat transfer coefficients in riser is higher than in downcomer.

  • PDF

Dependence of the peak fluxes of solar energetic particles on CME parameters and magnetic connectivity

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim;Kahler, S.W.
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.82.3-83
    • /
    • 2017
  • We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multi-spacecraft is similar to that on 2D CME speed. 2) There is a positive correlation between SEP peak flux and 3D angular width from multi-spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. 3) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 4) The multiple regression method between SEP peak fluxes and CME parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

Effects of included angle on pool boiling of tube array having horizontal upper tube

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.530-537
    • /
    • 2020
  • This study investigates the effect of an included angle and heat flux on heat transfer of V-shape tube array having a horizontal upper tube. The test uses two stainless steel tubes with a smooth surface submerged under the water at atmospheric pressure. The angle varies from 2° to 24°. The heat transfer coefficient gets decreasing in consequence as the angle increases. The enhancement due to the lower tube is distinct as the heat flux is lower than 60 kW/㎡, where the effect of the convective flow is dominant. The present study and the published results show a similar tendency. Although the heat transfer coefficient for the present study is smaller than the symmetry case, enhanced heat transfer is observed compared to the tube array having a lower horizontal tube as the included angle is less than 10°.

A Comparison of the Heat Transfer Performance of Thermosyphon Using a Straight Groove and a Helical Groove

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2296-2302
    • /
    • 2005
  • This study is focused on the comparison of heat transfer performance of two thermosyphons having 60 straight and helical internal grooves. Distilled water has been used as working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, the inclination angle and operating temperature were used as experimental parameters. The heat flux and heat transfer coefficient are estimated from experimental results. The conclusions of this study may be summarized as follows; Liquid fill charge ratio, inclination angle and geometric shape of grooves were very important factors for the operation of thermosyphon. The optimum liquid fill charge ratio for the best heat flux were $30\%$. The heat transfer performance of helically grooved tube was higher than that of straight grooved tube in low inclination angle (less than $30^{\circ}$), but the results were opposite in high inclination angle (more than $30^{\circ}$). As far as optimum inclination angle concerns, range of $25^{\circ}\~30^{\circ}$ for a helically grooved tube and about $40^{\circ}$ for a straight grooved tube are suggested angles for the best results.

고온 열전달면의 각도에 따른 분무냉각특성에 관한 연구 (A Study on the Spray Cooling Characteristics on the Angle of Hot Heat Transfer Surface)

  • 윤두호;김경근;김명환;오철;윤석훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.8-14
    • /
    • 2001
  • The purpose of this study is to elucidate heat characteristics according to inclination angle of the hot flat plate at the spray cooling. As results of this experiment, the heat flux, the heat transfer coefficient and the cooling speed are increased as the liquid volume flux and subcooled temperature go up. And as the inclination angle of the heat transfer surface is increased, the cooling speed on the inclined flat plate becomes faster. It means that the cooling ability is increased because droplets were excluded by gravity.

  • PDF

MULTIPLE FLUX SYSTEMS AND THEIR WINDING ANGLES IN HALO CME SOURCE REGIONS

  • Kim, Hye- Rim;Moon, Y.J.;Jang, Min-Hwan;Kim, R.S.;Kim, Su-Jin;Choe, G.S.
    • 천문학회지
    • /
    • 제41권6호
    • /
    • pp.181-186
    • /
    • 2008
  • Recently, Choe & Cheng (2002) have demonstrated that multiple magnetic flux systems with closed configurations can have more magnetic energy than the corresponding open magnetic fields. In relation to this issue, we have addressed two questions: (1) how much fraction of eruptive solar active regions shows multiple flux system features, and (2) what winding angle could be an eruption threshold. For this investigation, we have taken a sample of 105 front-side halo CMEs, which occurred from 1996 to 2001, and whose source regions were located near the disk center, for which magnetic polarities in SOHO/MDI magnetograms are clearly discernible. Examining their soft X-ray images taken by Yohkoh SXT in pre-eruption stages, we have classified these events into two groups: multiple flux system events and single flux system events. It is found that 74% (78/105) of the sample events show multiple flux system features. Comparing the field configuration of an active region with a numerical model, we have also found that the winding angle of the eruptive flux system is slightly above $1.5{\pi}$.

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.