• Title/Summary/Keyword: fluvial processes

Search Result 46, Processing Time 0.033 seconds

Simulating Depositional Changes in River and It's Prediction (그래픽 모사기법을 이용한 하천 변천의 재현과 예측)

  • Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.579-592
    • /
    • 1994
  • A case study is presented where a fluvial system is modeled in three dimensions and compared to data gathered from a study of the Arkansas River. The data is unique in that it documents changes that affected a straight channel that was excavated within the river by the U.S. Army Corps of Engineers. Excavation plan maps and sequential aerial photographs show that the channel underwent massive deposition and channel migration as it returned to a more natural, meandering path. These records illustrate that stability of fluvial system can be disrupted either by catastrophic events such as floods or by subtle events such as the altering of a stream's equilibrium base level or sediment load. SEDSIM, Stanford's Sedimentary Basin Simulation Model, is modified and used to model the Arkansas River and the geologic processes that changed in response to changing hydraulic and geologic parameters resulting from the excavation of the channel. Geologic parameters such as fluid and sediment discharge, velocity, transport capacity, and sediment load are input into the model. These parameters regulate the frequency distribution and sizes of sediment grains that are eroded, transported and deposited. The experiments compare favorably with field data, recreating similar patterns of fluid flow and sedimentation. Therefore, simulations provide insight for understanding and spatial distribution of sediment bodies in fluvial deposits and the internal sedimentary structure of fluvial reservoirs. These techniques of graphic simulation can be contributed to support the development of the new design criteria compatible with natural stream processes, espacially drainage problem to minimize environmental disruption.

  • PDF

Properties of Channel and Evolutions of Fluvial Terraces in Odae River (오대천의 특성과 하안단구의 형성과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.224-239
    • /
    • 2009
  • This study analyzes the properties of fluvial landforms in the upper and lower reaches and investigates the evolutions of stream and fluvial terrace in the Odae river basin. The lower basin of the river that consist of sedimentary rocks resistant to weathering and erosion processes shows higher altitude, relief and slope than the upper basin that consist of granite less resistant to weathering and erosion processes. The average width of river valley at the lower reaches is one-third to the upper reaches and the average width of river channel at the lower reaches is narrower than at the upper reaches. Based on the OSL age dating, the fluvial terrace T1 formed at the temperature-rising period during the late MIS 2 and T2 formed at the middle MIS 3, interstadial period during the last glacial period. Based on the these results, the average incision rates of Odae river are calculated as 0.205m/ka and 0.269m/ka at the upper granite area and lower sedimentary rocks area, respectively.

Analysis on Fluvial Geomorphological Characteristics based on Past and Present Data for River Restoration: An Application to the Miho River and the Naesung River (하천 복원을 위한 과거 및 현재 자료 기반의 하천지형학적 특성 분석: 미호천과 내성천을 중심으로)

  • Lee, Chan Joo;Kim, Ji Sung;Kim, Kyu Ho;Shin, Hyoung Sub
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.169-183
    • /
    • 2015
  • As a basic work for river restoration, analysis on fluvial geomorphological characteristics is made using past and present data to understand close-to-nature geomorphic status. The Miho and the Naesung Rivers are targets of this study. Fluvial geomorphic variables including valley-floor width, sinuosity, bankfull width, channel gradient, bed material size, bankfull discharge and unit stream power are evaluated with dominant processes. Though common sand-bed rivers with similar catchment area, the Miho and the Naesung Rivers are different in terms of valley-floor width, channel shape variables and dominant processes related with longitudinal location. In addition, analyses on interrelationship among the geomorphological variables are carried. Bankfull width is shown to be proportional to bankfull discharge, as is in a rough agreement with the previous studies. Relationship of bankfull discharge and channel gradient shows meandering and braiding are prevalent in the Miho River, whereas the most of the sub-reaches of the Naesung River fall to braiding. Relationship of channel gradient with width-depth ratio indicates dune-ripple processes are dominant in the Miho River, while the Naesung River shows longitudinal diversity from braiding in the downstream sub-reaches to riffle-pool and plane-bed along the upper ones. Analyses based on the past data on a river in a close-to-nature status are thought to be rather reasonable in comparison with those on the same river in a engineered condition.

Late Pleistocene Fluvial Sequence in South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Nahm, Wook-Hyun;Lee, Yung-Jo;Park, Ji-Hoon
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.33-42
    • /
    • 2004
  • In South Korea a Pedo-sedimentary Sequence(PS) indicating the Last Glacial Maximun(LGM) is typified y a brown to dark brown, relatively stiff paleosol layers formed by repetitive freezing and thawing processes which in turn left characteristi glossic textures in soil-solum, polygolnal structures with a flagipans, vertical soil wedges or freezing cracks, and horizontal foliations, As a pre-LGM sedimentary sequences (older than 25Ka), the Old Fluvial Sequence(OFS) overlain by the Slope Sedimentary Sequence(SS) are distributed commonly at the base level higher than 14-15m above present river-bed along the major river basin. After the LGM (ca. 18Ka), the Young Fluvial Sequence(YFS) appears at an altitude ascending order of sedimentary profiles. In this fluvial organic muds of Jangheungri site(Jinju), Sorori site(Cheonwon), and Youngsan estruarine rivermouth(Mokpo) were exemplified in order to interpret their formation ages and environments. As result of $^{14}C$ datings, the formation ages of te organic muds are Boelling to Alleroed (MIS-1). These organic muds were fomed in fluvial backswamp or local pond/bog in response to shifting fluvial system. On the basis of palynological production dominant with Abies/Picea-Betula and Ranunculaceae, Compositae, Cyperaceae, and Graminae, it was interpreted that more boreal to subboreal condition was prevailed rather than temperate like today during the formation of organic muds and soil moisture condition was a repetition of wet and dry condition.

  • PDF

Post LGM Fluvial Environment and Palynological Changes of South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Bong, Pil-Yoon;Nahm, Wook-Hyun;Lee, Heon-Jong;Lee, Yung-Jo;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Wkan;Oh, Keun-Chang
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2003
  • In Korea terrestrial fluvial sequences can be used as pedological and sedimentological markers indicating a millenium-scale environmental and climatic changes imprinted in fluvial sub-environments, which in turn are represented by the cyclicity of fluvial sands, backswamp organic muds, and flooding muds intercalations of frostcracked or dessicated brown paleosols. Post LGM and Holocene fluvial and alluvial sedimentary sequences of Korea are formed in such landscapes of coastal, floodplain, backswamp and hillslope areas. Among them, the most outstanding depositional sequences are fluvial gravels, sands and organic mud deposits in coastal, fluvial, or alluvial wetlands. The aim of this study is to explain the sedimentary sequences and palynofloral zones since the last 15,000years, on the basis of organic muds layers intercalated in fluvial sand deposits. Jangheung-ri site of Nam river, Soro-ri site of Miho river, Youngsan rivermouth site in Muan, Oksan-ri site of Hampyeong and Sanggap-ri site of Gochang are illustrated to interpret their sedimentary facies, radiocarbon datings, and palynofloral zonation. Up to the Middle to Late Last Glacial(up to 30-35Ka), old river-bed, flooding, and backswamp sequences contain such arboreal pollens as Pinus, Abies, and Picea, and rich in non-arboreal pollens like Cyperaceae, Gramineae, Ranunculaceae, and Compositae. During the LGM and post-LGM periods until Younger Dryas, vegetation has changes from the sub-alpine conifer forest(up to about 17-11Ka), through the conifer and broad-leaved deciduous forest, or mixed forest (formed during 16,680-13,010yrB.P), to the deciduous and broad-leaved forest (older than 9,500yrB.P). In the Earliest Holocene flooding deposits, fragments of plant roots are abundant and subjected to intensive pedogenic processes. During Holocene, three arboreal pollen zones are identified in the ascending order of strata; Pinus-Colyus zone(mixed conifer and deciduous broad-leaved forest, about up to 10Ka), Alnus-Quercus forest (the cool temperate deciduous broad-leaved forest, about 10Ka-2Ka), and Pinus forest (the conifer forest, about after 2Ka), as examplified in Soro-ri site of Cheonwon county. The palynological zonations of Soro-ri, Oksan-ri, Sanggap-ri, Youngsan estuary, and Gimhae fluvial plain have been recognized as a provisional correlation tool, and zonations based on fluvial backswamp and flooding deposits shows a similar result with those of previous researchers.

  • PDF

Analysis of Fluvial Terraces at Kohyun River in Youngcheon City (경북 영천시 고현천의 하안단구 지형 분석)

  • Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.447-462
    • /
    • 2009
  • Kohyun River basin is located at southern parts of Taebaek Mountains and most of river basins consists of sedimentary rock. The aims of this study are to investigate the distribution characteristics and processes of fluvial terraces at Kohyun River, using scientific methods such as classification of fluvial landforms, analysis of geomorphological deposits, XRD and OSL age dating. In Kohyun River basin are three levels terraces from T1 to T3. Fluvial terraces are assumed to be erosional terraces according to deposited situation of alurium and existences of bedrock riverbed. From the result of OSL age dating, formation age of fluvial terrace 1(T1) is calculated about 37,000 yr.B.P.(MIS 3), and fluvial terrace 2(T2) is calculated about 113,000 yr.B.P.(MIS 5). Therefore, fluvial terraces at Kohyun River are assumed to be formed at warmer period in the glacial stages or cooler period in the interglacial stages. The incision rate of fluvial terrace 1 at Kohyun River is calculated to be 0.054m/ka, and the incision rate of fluvial terrace 2 is calculated to be 0.115m/ka. This results suggest to lower incision rate than other rivers in Korea because of low uplift rates and little discharge.

STRATIGRAPHIC ARCHITECTURE OF FLUVIAL SEQUENCES IN THE NORTHWESTERN PART OF KYONGSANG BASIN

  • Jo H. R.;Chough S. K.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.47-56
    • /
    • 2000
  • The northwestern part of Kyongsang Basin largely comprises interbedded sandstone and mudstone with local conglomeratic deposits in the basin margin, representing marginal alluvial fans and fluvial depositional environments. The non-marine successions are divided into successive stratigraphic units, each of which is unique in facies assemblages and architecture of sandstone bodies. Two stratigraphic units, i.e., Sinpyong-Anpyong and Jotap units are examined in terms of stratigraphic architecture and its causative processes. Detailed architectural analysis reveals that the channel systems of Sinpyong-Anyong unit were of braided patterns, whereas those of Jotap unit were dominated by small-scale bedforms. The difference in fluvial styles can be attributed to the changes in amount and caliber of sediment load and water discharge, which might have been ultimately governed by basin tectonics, climate, and base level. Along with the marked change in fluvial style, the two successive units show repeated expansions of distal, water-logged floodplains and lacustrine facies in the basal and uppermost parts of Sinpyong-Anpyong unit, where the proportion of channel sandstone bodies is relatively low. These stratigraphic intervals are succeeded by the sequences with proximal, well-drained floodplain facies and relatively coarser-grained channel sandstone bodies of higher proportion, reflecting the progradation of proximal systems (the middle part of Sinpyong-Anpyong unit and Jotap unit). The overall stratigraphic architecture can be ascribed to the fluctuations in accommodation space and sediment supply induced by repeated basin subsidence.

  • PDF

Geomorphological Processes of Fluvial Terraces at the River Basins in the East Coast in the Southern Taebaek Mountain Range (태백산맥 남부 동해안 하천 유역의 하안단구 지형 형성)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • This study estimates geomorphological processes of fluvial terraces by uplifts and bedrock features, by the analyses of topography, distribution, formation age and incision rate of fluvial terraces using Gwang-cheon River in Uljin, Namdae-cheon River in Pyeonghae and Osip-cheon River in Yeongdeok located in the southern Taebaek Mountain Range. The tectonic and climatic terraces I in the upper reaches of Gwang-cheon River with an altitude from riverbed of 9~12m indicate the formation age of MIS 2 with a incision rate of 0.40m/ka. However, the tectonic and climatic terraces I in the upper reaches of Osip-cheon River with an altitude from riverbed of 7~10m show the formation age of MIS 3 with an incision rate of 0.10m/ka. These results suggest that the uplift rate in the Gwang-cheon River basin is likely to be higher than that in the Osip-cheon River basin. Unlike the lower reaches of Osip-cheon River, the thalassostatic terraces are not found in the lower reaches of Gwang-cheon River, because the basin has low maintainable ability of landforms in river valley due to high uplift rate and bedrock properties resistant to weathering and erosion. On the other hand, the lowest tectonic and climatic terraces in the study areas indicate different formative ages and the terraces during the cooling stage in interglacial as well as during interstadial are also found. Therefore, this study suggests that chronological method for fluvial terrace by the previous developmental model of climatic terrace should be reconsidered.

  • PDF

Formation processes of low river terraces in Korea (우리나라 저위하안단구(低位河岸段丘)의 형성요인)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.2
    • /
    • pp.71-81
    • /
    • 2001
  • According to the change of stream power/resisting power relationship due to the crustal movement or the climatic change, most channel landforms which reflect the equilibrium state of fluvial system are eroded and a part of them is remained as a river terrace. In many rivers in Korea are extensively distributed the relatively younger low river terraces. But their accurate formation mechanism is not known. In this paper, the formation processes and the dating of low river terraces distributed in Nakdong River basin will be investigated. Stream power of the downward erosion was revived because the sea level fell down. So stream power was superior to the resisting power under the cool-wet climatic condition during the last glacial period. Thus the river bed was excavated deeply, so that low river terraces were built up. And many incised meander loops were cut during this period. But, when fluvial system did not have equilibrium over all reaches, the last glacial period ended and the sea level initiated to rise rapidly. The headward erosion from the fall of sea level during the last glacial period had kept up to Hagye Fall because of the cutting of incised meander loops. Deeply excavated valleys and abandoned channel of cut-meander in lower reaches of a stream were filled with sediments. Thus the longitudinal profile of the uppermost reaches reflect the last interglacial, the upper reaches the last glacial, and the middle/1ower reaches recent fluvial system. Therefore low river terraces have been formed since the last glacial period.

  • PDF

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.