• 제목/요약/키워드: flutter

검색결과 503건 처리시간 0.027초

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

항공기 운항에 따른 프랏터 장애 예측.분석 (Estimation and Analysis of Flutter Interference from Flights of an Airplane)

  • 이찬주;김봉철;조성준
    • 한국전자파학회논문지
    • /
    • 제10권3호
    • /
    • pp.430-439
    • /
    • 1999
  • 본 논문에서는 인천국제공항을 프랏터 (flutter) 장애 예측 대상지역으로 선정하여 프랏터 장애를 예측.분석하였으며, 이에 대한 대책 방안을 제시하였다. 프랏터 장애.예측 함수로서 직접파 전계강도, 안테나 높이, 송신점 ERP, 반사계수 등을 고려하여 프랏터 장애에 대해 컴퓨터 시뮬레이션을 수행하였다. 결과로부터, 항공기 운항에 따른 프랏터 장애는 매우 심각한 것으로 나타났고 항공기와 전파공신점과의 거리, 전파 송신점과 수신점간의 지형 및 항공기의 반사계수에 따라 프랏터의 장애 정도가 달라짐을 알 수 있었다.

  • PDF

Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades

  • Ghasemi, Ahmad Reza;Jahanshir, Arezu;Tarighat, Mohammad Hassan
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.103-116
    • /
    • 2014
  • Aeroelasticity is the main source of instability in structures which are subjected to aerodynamic forces. One of the major reasons of instability is the coupling of bending and torsional vibration of the flexible bodies, which is known as flutter. The presented investigation aims to study the aeroelastic stability of composite blades of wind turbine. Geometry, layup, and loading of the turbine blades made of laminated composites were calculated and evaluated. To study the flutter phenomenon of the blades, two numerical and analytical methods were selected. The finite element method (FEM), and JAR-23 standard were used to perform the numerical studies. In the analytical method, two degree freedom flutter and Lagrange's equations were employed to study the flutter phenomena analytically and estimate the flutter speed.

DES 난류모델 및 받음각 변화를 고려한 AGARD 445.6 날개의 천음속 플러터 응답 특성 (Transonic Flutter Characteristics of the AGARD 445.6 Wing Considering DES Turbulent Model and Different Angle-of-Attacks)

  • 김요한;김동현
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.27-32
    • /
    • 2010
  • In this study, transonic flutter response characteristics have been studied for the AGARD 445.6 wing considering various turbulent models and several angle of attacks. The developed fluid-structure coupled analysis system is applied for flutter computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. The flutter boundaries of AGARD 445.6 wing are verified using developed computational system. For the nonlinear unsteady aerodynamics in high transonic flow region, DES turbulent model using the structured grid system have been applied for the wing model. Characteristics of flutter responses have been investigated for various angle of attack conditions. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

On the flutter characteristics of separated two box girders

  • Matsumoto, Masaru;Shijo, Rikuma;Eguchi, Akitoshi;Hikida, Tetsuya;Tamaki, Hitoshi;Mizuno, Keisuke
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.281-291
    • /
    • 2004
  • The flutter characteristics of long span bridges are discussed from the point of the unsteady pressure distribution on bridge deck surface during heaving/torsional vibration related to the aerodynamic derivatives. In particular, it is explained that the coupling terms, which consist of $A_1^*$ and $H_3^*$, play a substantial role on the coupled flutter, in comparison with the flutter characteristics of various structural sections. Also the effect of the torsional/heaving frequency ratio of bridge structures on the flutter instability is discussed from the point of the coupling effect between heaving and torsional vibrations.

유도무기 날개 단면형상에 따른 초음속 및 극초음속 플러터 특성 (Supersonic and Hypersonic Flutter Characteristics for Various Typical Section Shapes of Missile Fin)

  • 김동현;김유성;김요한;오일권
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.496-502
    • /
    • 2008
  • In this study, supersonic and hypersonic flutter characteristics have been analyzed for the various typical section shapes of missile fin configurations. Nonlinear flutter analyses are conducted considering the effect of moving shock waves. Computational fluid dynamic method is applied to accurately predict unsteady aerodynamic loads due to structural motions for the solution of aeroelastic governing equations. Commonly used typical section shapes of supersonic and hypersonic launch vehicles are considered in the present numerical study. Detailed flutter responses for four different typical section models are presented and the flutter characteristics are physically investigated.

유체 이송 연직 외팔 송수관의 고유치분기와 플러터 모드에 미치는 중력 효과 (Gravitational Effect on Eigenvalue Branches and Flutter Modes of a Vertical Cantilevered Pipe Conveying Fluid)

  • 류시웅;신광복;류봉조
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.67-74
    • /
    • 2006
  • The paper presents gravitational effect on eigenvalue branches and flutter modes of a vertical cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the related numerical solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratios of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

말단질량을 갖는 외팔 송수관의 고유치 분기와 플러터 모드 (Eigenvalue Branches and Flutter Modes of a Cantilevered Pipe Conveying Fluid and Having a Tip Mass)

  • 류봉조;류시웅;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.956-964
    • /
    • 2003
  • The paper describes the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration. The critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place. are definitely determined. Also, in the case of haying internal damping, the critical tip mass ratios, at which the consistency between eigenvalue braches and quasi-modes occurs. are thoroughly obtained.

CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험 (Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method)

  • 오세원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.