• Title/Summary/Keyword: flutter

Search Result 503, Processing Time 0.024 seconds

Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

  • Lee, Seung-Jun;Lee, In;Shin, Won-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.140-147
    • /
    • 2007
  • Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

Vibration Measurement and Flutter Suppression Using Patch-type EFPI Sensor System

  • Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • An optical phase tracking technique for an extrinsic Fabry-Perot interferometer (EFPI) is proposed in order to overcome interferometric non-linearity. Basic idea is utilizing strain-rate information, which cannot be easily obtained from an EFPI sensor itself. The proposed phase tracking system consists of a patch-type EFPI sensor and a simple on-line phase tracking logic. The patch-type EFPI sensor comprises an EFPI and a piezoelectric patch. An EFPI sensor itself has non-linear behavior due to the interferometric characteristics, and a piezoelectric material has hysteresis. However, the composed patch-type EFPI sensor system overcomes the problems that can arise when they are used individually. The dynamic characteristics of the proposed phase tracking system were investigated, and then the patch-type EFPI sensor system was applied to the active suppression of flutter, dynamic aeroelastic instability, of a swept-back composite plate structure. The proposed system has effectively reduced the amplitude of the flutter mode, and increased flutter speed.

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

Nonlinear Transonic Flutter Analysis of a Composite Fin Considering Delamination Effect (층간분리 효과를 고려한 복합재 핀의 비선형 천음속 플러터 해석)

  • Gwang Young Lee;Ki-Ha Kim;Dong-Hyun Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.82-93
    • /
    • 2023
  • In this paper, nonlinear transonic flutter analyses of a composite missile fin considering the effect of delamination are conducted. An effective modal analysis methodology is adopted and verified with the experimental modal test data for laminated composite plates with delamination. Extended version of the in-house computational aeroelastic analysis program with the transonic small-disturbance (TSD) code is used in order to predict the flutter dynamic pressure of the delaminated composite fin models. In the subsonic, transonic, and supersonic flow regions, nonlinear time-domain flutter analyses are performed for various delamination conditions, and aeroelastic characteristics due to the delamination phenomena are examined in detail.