• Title/Summary/Keyword: flushing effluent

Search Result 24, Processing Time 0.023 seconds

A Simple and Effective Purification Method for Removal of U(VI) from Soil-Flushing Effluent Using Precipitation: Distillation Process for Clearance

  • Hyun-Kyu Lee;Ilgook Kim;In-Ho Yoon;Wooshin Park;Seeun Chang;Hongrae Jeon;Sungbin Park
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • Background: The purpose of this study is to purify uranium (U[VI])-contaminated soil-flushing effluent using the precipitation-distillation process for clearance. Precipitation and distillation are commonly used techniques for water treatment. We propose using a combination of these methods for the simple and effective removal of U(VI) ions from soil-flushing effluents. In addition, the U concentration (Bq/g) of solid waste generated in the proposed treatment process was analyzed to confirm whether it satisfies the clearance level. Materials and Methods: Uranium-contaminated soil was decontaminated by soil-flushing using 0.5 M sulfuric acid. The soil-flushing effluent was treated with sodium hydroxide powder to precipitate U(VI) ions, and the remaining U(VI) ions were removed by phosphate addition. The effluent from which U(VI) ions were removed was distilled for reuse as a soil-flushing eluent. Results and Discussion: The purification method using the precipitation-distillation process proposed in this study effectively removes U(VI) ions from U-contaminated soil-flushing effluent. In addition, most of the solid waste generated in the purification process satisfied the clearance level. Conclusion: The proposed purification process is considered to have potential as a soil-flushing effluent treatment method to reduce the amount of radioactive waste generated.

Pilot Scale Feasibility Test of In-situ Soil Flushing by using 'Tween 80' Solution at Low Concentration for the Xylene Contaminated Site

  • Um, Jae-Yeon;Lee, Gyusang;Song, Sung-Ho;Hong, Sunwook;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.38-47
    • /
    • 2013
  • This study was performed to identify the optimal operating conditions and to evaluate the xylene removal efficiency, applying in-situ soil flushing with the low concentrated solution of 'Tween 80' at the xylene contaminated site. The pilot scale test site ($5m{\times}5m{\times}3m$), was mainly composed of 'sandy loam', with the average hydraulic conductivity of $9.1{\times}10^{-4}cm\;s^{-1}$. The average xylene concentration of the site was 42.1 mg $kg^{-1}$, which was more than 2.5 times higher than Korea soil pollution warning limit (15 mg $kg^{-1}$). For the soil flushing, 7,800 L of 0.1~0.2% surfactant solution was injected into three injection wells at the average injection time of 9 hr $d^{-1}$ for 10 days, followed by the additional only groundwater injection of 6,000 L. The same amount of the effluent solution was extracted from three extraction wells. From the analysis for xylene concentration of all effluent at 3 extraction wells, total 166 g of xylene was removed by in-situ surfactant flushing. Even though the residual xylene concentrations of 7 soil sampling locations in the test site were different due to the soil heterogeneity, from the comparison of xylene concentration at 7 locations before/after the feasibility test, 53.9% of the initial xylene in the site was removed from three extraction wells (mainly Ext-N and Ext-M well). The results showed that the in-situ soil flushing by using low concentrated 'Tween 80' solution had a great potential to remediate the xylene contaminated site.

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF

Selection of Surfactant and Operation Scheme for Improved Efficiency of In-situ Soil Flushing Process (원위치 토양세척 공정의 효율향상을 위한 세제선정과 운전기법)

  • Son, Bong-Ho;Lim, Bong-Su;Oa, Seong-Wook;Lee, Byung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2006
  • Several tests were conducted to optimize the design parameters of ln-situ soil flushing processes for diesel contaminated soil. According to the batch extraction test for three anionic surfactants evaluation, Calgonit limiting bubble occurrence was selected for its higher oil cleaning efficiency. After optimum surfactant selection, there were many sets of column flushing test. Over 70% of BTEX was removed in this surfactant dose with 400% of soil volume. In the case of no surfactant addition flushing in column, so called "blank flushing test", BTEX removal rate was 64%. But when we reused the effluent for the cleaning solution, the removal rate was decreased to 46.9%. This result showed reabsorption of oil occurred on the soil. With the addition of Calgonit solution to the diesel contaminated column, BTEX was removed up to 98.9% during the first flushing and 99.4% for the second recirculation flushing. In microcosm tests, diesel contaminated soils were cleaned by both surfactant flushing and biological activities. In anoxic condition, nitrate was used as an electron acceptor while the surfactant and the oil were used an electron donor. BTEX removal efficiency could be achieved up to 80% by biological degradation.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

A Study on the Treatment of Soil Flushing Effluent Using Electrofloatation : Effects of Electrolyte and pH (전기부상을 이용한 토양세정 유출수 처리에 관한 연구 : 전해질 및 pH의 영향)

  • 소정현;최상일;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.56-60
    • /
    • 2003
  • The optimal operation conditions of electrofloatation for oil-water separation of soil flushing effluent including electrolyte and pH were investigated. The reactor (200 ${\times}$ 10 ${\times}$ 15 cm) for the experiment was constructed by using acrylic plate. Diesel concentration was 1,000 mg/L in the 1 % mixed surfactant solution ($POE_5$: $POE_{14}$ 1: 1). Titanium coated electrode was used as cathode and stainless steel electrode as anode. Reaction time was 62 minutes (reaction time: 60 min., flotation time: 2 min.) and voltage was 6 V. The separation efficiency of electrofloatation was improved to 40% by electrolyte addition. Furthermore, NaCl (1N) added as electrolyte was showed enhanced efficiency compared to NaOH (1N). While, the effect of both NaCl and NaOH was sequentially increased in the range of 0.2∼1.0% (0.02∼0.1 M). The equilibrium time was found as 20 min. in the range of 0.4∼1.0% (0.04∼0.1M) for both of them.

A Study on the Treatment of soil Flushing Effluent Using Electrofloatation (전기부상법을 이용한 토양세정 유출수 처리에 관한 연구)

  • 소정현;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 2002
  • The optimal operation conditions, including voltage applied, reaction time, distance between electrodes. and electrode material. were investigated for the treatment of soil flushing effluent using electrofloatation. When 3V was applied for 1 hour, 88% oil-water separation efficiency was achieved. In case of 6V and above, 90% efficiencies were achieved. As reaction time and distance between electrodes were longer, separation efficiencies were higher and lower, respectively. Separation efficiencies for different anode materials were copper > aluminum > iron > titanium. It might result from the differences of their electrical conductivities.

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF

Treatment of Flushing Effluent Using Immobilized Cell (고정화 미생물을 이용한 세척유출수의 처리)

  • 전민하;소정현;최상일;김인호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.220-223
    • /
    • 2001
  • 본 연구에서는 endosulfan으로 오염된 토양을 in-situ flushing으로 정화시 발생되는 세척 유출수의 고정화 미생물에 의한 처리 효율 및 적용성을 검토하였다. 초기 endosulfan 농도 및 pH가 각각 5mg/L, 5.6인 세척유출수의 체류시간을 1, 3, 5시간으로 하여 고정화미생 물 충진 컬럼에 적용한 결과, 제거효율은 각각 62, 82, 89%로 체류시간이 증가될수록 향상되었으며 3가지 조건 모두 약 80시간 이후에 정상상태에 도달하였다. 체류시간 3시간에서 유입수내 endosulfan 농도를 50mg/L 및 100mg/L로 증가시킨 결과, 제거효율이 각각 70% 및 50% 부근까지 저하되었다. 유입수의 pH를 4.0과 9.0으로 변화시켜 실험한 결과 각각 73%와 66%의 제거효율을 나타내었다. pH 9.0보다 4.0에서 제거효율이 약간 높은 이유는 사용 배지의 pH가 약산성을 띠기 때문에 알칼리 상태보다 약산성에서 미생물의 활성이 높기 때문으로 판단된다. 유출수를 재순환 시킨 결과 제거효율이 90%까지 향상되는 것을 볼 수 있었으며, 이는 재 순환되는 유출수의 농도 저감 및 고정화 미생물과의 재 접촉에 기인하는 것으로 판단된다. 유입수에 공기를 주입한 결과, 유출수의 재순환 없이도 약 40시간 후에 93%의 제거효율을 보였으며 이는 미생물 활성의 증가에 기인하는 것으로 판단된다.

  • PDF

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF