• 제목/요약/키워드: fluoroquinolone resistance

검색결과 49건 처리시간 0.028초

Consideration in treatment decisions for refractory Mycoplasma pneumoniae pneumonia

  • Cho, Hye-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • 제64권9호
    • /
    • pp.459-467
    • /
    • 2021
  • Mycoplasma pneumoniae (MP) is the most common cause of childhood bacterial pneumonia. Although macrolide is known to be effective as a first-line therapy, the proportion of macrolide resistance in MP pneumonia has strikingly increased during recent 2 decades in East Asia. This is challenging to physicians since they have to decide more often whether to use secondary treatment. Diagnostic methods to detect macrolide-resistance of MP are currently not available in Korean hospitals. Even in the diagnosis of MP infection, both serologic and molecular test have limitation: inability to differentiate current illness from carriage or asymptomatic infection. Combining these 2 diagnostic methods and excluding infection caused by other respiratory pathogens allow a more reliable diagnosis. This effort is even more demanding in recent years to keep children from unnecessary exposure to secondary antibiotics. Although several observational studies have reported that tetracycline and fluoroquinolone, which are considered in the treatment of refractory MP pneumonia, have efficacy of shortening the duration of fever and respiratory symptoms, those findings need to be proven by well-designed prospective studies. The use of tetracycline and fluoroquinolone in children is generally tolerable, as supported by many observational data. However, since concerns about side effects still remain, careful consideration about benefits and risks is needed to decide their use.

다제내성결핵 균주에서 Reverse Hybridization Assay를 이용한 Fluoroquinolone, Kanamycin 신속 내성 검사의 유용성 (Evaluation of Reverse Hybridization Assay for Detecting Fluoroquinolone and Kanamycin Resistance in Multidrug-Resistance Mycobacterium tuberculosis Clinical Isolates)

  • 박진수;성낙문;황수희;전재현;원영섭;민진홍;김천태;강형석
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권1호
    • /
    • pp.44-49
    • /
    • 2012
  • Background: Multidrug-resistant tuberculosis (MDR-TB) is an increasing public health problem and poses a serious threat to global TB control. Fluoroquinolone (FQ) and aminoglycoside (AG) are essential anti-TB drugs for MDR-TB treatment. REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$ (M&D, Wonju, Korea) were evaluated for rapid detection of FQ and kanamycin (KM) resistance in MDR-TB clinical isolates. Methods: M. tuberculosis (n=67) were isolated and cultured from the sputum samples of MDR-TB patients for extracting DNA of the bacilli. Mutations in genes, gyrA and rrs, that have been known to be associated with resistance to FQ and KM were analyzed using both REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$, respectively. The isolates were also utilized for a conventional phenotypic drug susceptibility test (DST) as the gold standard of FQ and KM resistance. The molecular and phenotypic DST results were compared. Results: Sensitivity and specificity of REBA MTB-FQ$^{(R)}$ were 77 and 100%, respectively. Positive predictive value and negative predictive value of the assay were 100 and 95%, respectively, for FQ resistance. Sensitivity, specificity, positive predictive value and negative predictive value of REBA MTB-KM$^{(R)}$ for detecting KM resistance were 66%, 94%, 70%, and 95%, respectively. Conclusion: REBA MTB-FQ$^{(R)}$ and REBA MTB-KM$^{(R)}$ evaluated in this study showed excellent specificities as 100 and 94%, respectively. However, sensitivities of the assays were low. It is essential to increase sensitivity of the rapid drug resistance assays for appropriate MDR-TB treatment, suggesting further investigation to detect new or other mutation sites of the associated genes in M. tuberculosis is required.

Species Profiles and Antimicrobial Resistance of Non-aureus Staphylococci Isolated from Healthy Broilers, Farm Environments, and Farm Workers

  • Ji Heon Park;Gi Yong Lee;Ji Hyun Lim;Geun-Bae Kim;Kun Taek Park;Soo-Jin Yang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.792-804
    • /
    • 2023
  • Non-aureus staphylococci (NAS), particularly antimicrobial-resistant NAS, have a substantial impact on human and animal health. In the current study, we investigated (1) the species profiles of NAS isolates collected from healthy broilers, farm environments, and farm workers in Korea, (2) the occurrence of antimicrobial-resistant NAS isolates, especially methicillin resistance, and (3) the genetic factors involved in the methicillin and fluoroquinolone resistance. In total, 216 NAS isolates of 16 different species were collected from healthy broilers (n=178), broiler farm environments (n=18), and farm workers (n=20) of 20 different broiler farms. The two most dominant broiler-associated NAS species were Staphylococcus agnetis (23.6%) and Staphylococcus xylosus (22.9%). Six NAS isolates were mecA-positive carrying staphylococcal cassette chromosome mec (SCCmec) II (n=1), SCCmec IV (n=1), SCCmec V (n=2), or nontypeable SCCmec element (n=2). While two mecA-positive Staphylococcus epidermidis isolates from farm workers had SCCmec II and IV, a mecA-positive S. epidermidis isolate from broiler and a Staphylococcus haemolyticus isolate farm environment carried SCCmec V. The occurrence of multidrug resistance was observed in 48.1% (104/216 isolates) of NAS isolates with high resistance rates to β-lactams (>40%) and fusidic acid (59.7%). Fluoroquinolone resistance was confirmed in 59 NAS isolates (27.3%), and diverse mutations in the quinolone resistance determining regions of gyrA, gyrB, parC, and parE were identified. These findings suggest that NAS in broiler farms may have a potential role in the acquisition, amplification, and transmission of antimicrobial resistance.

Fluoroquinolone Resistance and gyrA and parC Mutations of Escherichia coli Isolated from Chicken

  • Lee Young-Ju;Cho Jae-Keun;Kim Ki-Seuk;Tak Ryun-Bin;Kim Ae-Ran;Kim Jong-Wan;Im Suk-Kyoung;Kim Byoung-Han
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.391-397
    • /
    • 2005
  • Escherichia coli is a common inhabitant of the intestinal tracts of animals and humans. The intestines of animals also represent an ideal environment for the selection and transfer of antimicrobial resistance genes. The aim of this study was to investigate the resistance of E. coli isolated from chicken fecal samples to fluoroquinolones and to analyze the characterization of mutations in its gyrA and parC gene related resistance. One hundred and twenty-eight E. coil isolates showed a high resistance to ciprofloxacin (CIP; $60.2\%$), enrofloxacin (ENO; $73.4\%$) and norfloxacin (NOR; $60.2\%$). Missense mutation in gyrA was only found in the amino acid codons of Ser-83 or Asp-87. A high percentage of isolates ($60.2\%$) showed mutations at both amino acid codons. Missense mutation in parC was found in the amino acid codon of Ser-80 or Glu-84, and seven isolates showed mutations at both amino acid codons. Isolates with a single mutation in gyrA showed minimal inhibitory concentrations (MIC) for CIP (${\le}0.5\;to\;0.75{\mu}g/ml$), ENO (1 to $4{\mu}g/ml$) and NOR (0.75 to $4{\mu}g/ml$). These MIC were level compared to isolates with two mutations, one in gyrA and one in parC, and three mutations, one in gyrA and two in parC (CIP, ${\le}0.5\;to\;3{\mu}g/ml;\;ENO,\;2\;to\;32<{\mu}g/ml;\;NOR,\;1.5\;to\;6\;{\mu}g/ml$). However, the isolates with two mutation in gyrA regardless of whether there was a mutation in parC showed high MIC for the three fluoroquinolones (CIP, 0.75 to $32{\le}{\mu}g/ml;\;ENO,\;3\;to\;32{\le}{\mu}g/ml;\;NOR,\;3\;to\;32{\le}{\mu}g/ml$). Interestingly, although the E. coil used in this study was isolated from normal flora of chicken, not clinical specimens, a high percentage of isolates showed resistance to fluoroquinolones and possessed mutations at gyrA and parC associated with fluoroquinolone resistance.

소아에서의 Fluoroquinolones 사용: 최근 경향을 중심으로 (The Use of Fluoroquinolones in Children: Recent Advances)

  • 최경민
    • Pediatric Infection and Vaccine
    • /
    • 제15권2호
    • /
    • pp.93-99
    • /
    • 2008
  • Fluoroquinolone은 Nalidixic acid가 개발된 이래로 광범위한 항균효과, 조직 내로의 우수한 침투성, 투여의 편이성 등으로 널리 사용되고 있다. 이러한 장점에도 불구하고 소아의 경우 동물연구에서 보인 연골 및 관절의 손상과 항생제 내성 증가의 우려 등으로 인해 그 사용이 제한되어 왔다. 그러나, 최근 몇몇 질환을 대상으로 소아에서 그 사용이 증가하고 있다. 반면 아직까지 이에 따른 연골 및 관절의 손상은 뚜렷한 연관성을 보이지 않고 있다. 그러나, 소아에서의 일반적 사용을 위해서는 추가적인 연구가 필요한 상태이다. 소아의 경우 fluoroquinolone 투여는 일차 항생제의 치료 실패 및 대체 가능한 항생제가 없는 경우에 한해 조심스럽게 투여하는 것이 바람직한 것으로 사료된다.

  • PDF

Comparison of Fluoroquinolone Resistance Determinants in Uropathogenic Escherichia coli between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea

  • Park, Min
    • 대한의생명과학회지
    • /
    • 제26권2호
    • /
    • pp.120-126
    • /
    • 2020
  • Fluoroquinolone (FQ) resistant uropathogenic Escherichia coli (UPEC) have become a major problem in urinary tract infections (UTIs). The purpose of this study was to compare the quinolone resistance-determining region (QRDR) and plasmid mediated quinolone resistance (PMQR) determinants of FQ resistant UPEC between 1989 and 2010-2014. A total of 681 strains of UPEC clinical isolates was collected from Korean healthcare facility in 1989 (123 strains) and in 2010-2014 (558 strains). The minimum inhibitory concentrations (MICs) of FQs were determined by agar dilution method. QRDRs (gyrA, gyrB, parC and parE) and PMQR determinants (qnrA, qnrB, qnrS, aac(6')-Ib-cr and qepA) were analyzed polymerase chain reaction and sequencing method. Among 681 isolates, FQ resistant UPEC were 3 strains (2.4%) in 1989 isolates and 220 strains (39.4%) in 2010-2014 isolates. The rate of the FQ resistant UPEC strains in 2010-2014 isolates was increased than that of in 1989 isolates. UPEC isolates from 1989 and 2010-2014 were shown to carry mutations in gyrA (Ser83 and Asp87), gyrB (Ser464 and Thr469), parC (Ser80 and Glu84) and parE (Glu460, Ser458, Ile464 and Leu445). The most common mutations of QRDRs in 1989 isolates were Ser83Leu and Asp87Gly in gyrA and Ser80Ile in parC (2 strains: 66.7%) while those in 2010-2014 isolates were Ser83Leu and Asp87Asn in gyrA and Ser80Il2 and Glu84Val in parC (88 strains: 40.0%). PMQR determinants were detected only in 2010-2014 UPEC strains (47 strains: 21.4%).

Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Determinants qnr and aac(6')-Ib-cr in Ciprofloxacin-Resistant Escherichia coli Isolates from Commercial Layer in Korea

  • Seo, Kwang Won;Lee, Young Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1180-1183
    • /
    • 2020
  • The prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) determinants in ciprofloxacin-resistant Escherichia coli isolated from a Korean commercial layer farm were studied. A total of 45 ciprofloxacin-resistant E. coli isolates were recovered and all isolates were multidrug-resistant. Eight isolates have the PMQR genes aac(6')-Ib-cr, qnrS1, and qnrB4, and seven isolates exhibited double amino acid exchange at both gyrA and parC, and have high fluoroquinolone minimum inhibitory concentrations. Five transconjugants demonstrated transferability of PMQR and β-lactamase genes and similar antimicrobial resistance. Because PMQR genes in isolates from commercial layer chickens could enter the food supply and directly affect humans, control of ciprofloxacin resistance is needed.

사람 및 가축 유래 분변 미생물 군집과 항생제 내성 유전자 간 상관 관계에 대한 연구 (Co-occurrence Analyses of Antibiotic Resistance Genes and Microbial Community in Human and Livestock Animal Feces)

  • 정지원;반다리 아프라지타;운노 타쯔야
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.335-343
    • /
    • 2022
  • BACKGROUND: Antibiotics used in animal husbandry for disease prevention and treatment have resulted in the rapid progression of antibiotic resistant bacteria which can be introduced into the environment through livestock feces/manure, disseminating antibiotic resistant genes (ARGs). In this study, fecal samples were collected from the livestock farms located in Jeju Island to investigate the relationship between microbial communities and ARGs. METHODS AND RESULTS: Illumina MiSeq sequencing was applied to characterize microbial communities within each fecal sample. Using quantitative PCR (qPCR), ten ARGs encoding tetracycline resistance (tetB, tetM), sulfonamide resistance (sul1, sul2), fluoroquinolone resistance (qnrD, qnrS), fluoroquinolone and aminoglycoside resistance (aac(6')-Ib), beta-lactam resistance (blaTEM, blaCTX-M), macrolide resistance (ermC), a class 1 integronsintegrase gene (intI1), and a class 2 integrons-integrase gene (intI2) were quantified. The results showed that Firmicutes and Bacteroidetes were dominant in human, cow, horse, and pig groups, while Firmicutes and Actinobacteria were dominant in chicken group. Among ARGs, tetM was detected with the highest number of copies, followed by sul1 and sul2. Most of the genera belonging to Firmicutes showed positive correlations with ARGs and integron genes. There were 97, 34, 31, 25, and 22 genera in chicken, cow, pig, human, and horse respectively which showed positive correlations with ARGs and integron genes. In network analysis, we identified diversity of microbial communities which correlated with ARGs and integron genes. CONCLUSION(S): In this study, antibiotic resistance patterns in human and livestock fecal samples were identified. The abundance of ARGs and integron genes detected in the samples were associated with the amount of antibiotics commonly used for human and livestocks. We found diverse microbial communities associated with antibiotics resistance genes in different hosts, suggesting that antibiotics resistance can disseminate across environments through various routes. Identifying the routes of ARG dissemination in the environment would be the first step to overcome the challenge of antibiotic resistance in the future.

Contamination of Chicken Meat with Salmonella enterica Serovar Haardt with Nalidixic Acid Resistance and Reduced Fluoroquinolone Susceptibility

  • Lee, Ki-Eun;Lee, Min-Young;Lim, Ji-Youn;Jung, Ji-Hun;Park, Yong-Ho;Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1853-1857
    • /
    • 2008
  • Salmonella contamination in chicken meat was studied with 100 chicken meat samples purchased from 55 shops located in various regions. A total of 21 isolates of Salmonella enterica were isolated from 21 chicken meat samples from four shops located at open markets, whereas there were none from supermarkets with well-equipped cold systems. Among these, 18 isolates were identified as Salmonella enterica serotype Haardt (S. Haardt) and three isolates were S. enterica serotype Muenchen. When the minimal inhibitory concentrations of the S. Haardt isolates were assayed with the agar dilution method to determine susceptibility to ampicillin, chloramphenicol, sulfisoxazole, tetracycline, and nalidixic acid, all 18 isolates were resistant to tetracycline and nalidixic acid and nine of these were resistant to ampicillin. These isolates showed reduced susceptibility to eight fluoroquinolones including ciprofloxacin, enrofloxacin, levofloxacin, gatifloxacin, gemifloxacin, moxifloxacin, norfloxacin, and ofloxacin. When quinolone resistance determining regions of gyrA and gyrB were sequenced, every isolate had the same missense mutation Ser83$\rightarrow$Tyr (TCC$\rightarrow$+TAC) in gyrA, whereas no mutation was found in gyrB. Pulsed-field gel electrophoresis with XbaI revealed a close relationship among these isolates, suggesting a contamination of raw chicken meat with clonal spread of nalidixic acid-resistant and quinolone-reduced susceptibility S. Haardt in chickens. Results in this study show the importance of a well-equipped cold system and the prudent use of fluoroquinolone in chickens to prevent the occurrence of quinolone-resistant isolates.

Impact of Anti-Tuberculosis Drug Use on Treatment Outcomes in Patients with Pulmonary Fluoroquinolone-Resistant Multidrug-Resistant Tuberculosis: A Nationwide Retrospective Cohort Study with Propensity Score Matching

  • Hongjo Choi;Dawoon Jeong;Young Ae Kang;Doosoo Jeon;Hee-Yeon Kang;Hee Jin Kim;Hee-Sun Kim;Jeongha Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • 제86권3호
    • /
    • pp.234-244
    • /
    • 2023
  • Background: Effective treatment of fluoroquinolone-resistant multidrug-resistant tuberculosis (FQr-MDR-TB) is difficult because of the limited number of available core anti-TB drugs and high rates of resistance to anti-TB drugs other than FQs. However, few studies have examined anti-TB drugs that are effective in treating patients with FQr-MDR-TB in a real-world setting. Methods: The impact of anti-TB drug use on treatment outcomes in patients with pulmonary FQr-MDR-TB was retrospectively evaluated using a nationwide integrated TB database (Korean Tuberculosis and Post-Tuberculosis). Data from 2011 to 2017 were included. Results: The study population consisted of 1,082 patients with FQr-MDR-TB. The overall treatment outcomes were as follows: treatment success (69.7%), death (13.7%), lost to follow-up or not evaluated (12.8%), and treatment failure (3.9%). On a propensity-score-matched multivariate logistic regression analysis, the use of bedaquiline (BDQ), linezolid (LZD), levofloxacin (LFX), cycloserine (CS), ethambutol (EMB), pyrazinamide, kanamycin (KM), prothionamide (PTO), and para-aminosalicylic acid against susceptible strains increased the treatment success rate (vs. unfavorable outcomes). The use of LFX, CS, EMB, and PTO against susceptible strains decreased the mortality (vs. treatment success). Conclusion: A therapeutic regimen guided by drug-susceptibility testing can improve the treatment of patients with pulmonary FQr-MDR-TB. In addition to core anti-TB drugs, such as BDQ and LZD, treatment of susceptible strains with later-generation FQs and KM may be beneficial for FQr-MDR-TB patients with limited treatment options.