DOI QR코드

DOI QR Code

Consideration in treatment decisions for refractory Mycoplasma pneumoniae pneumonia

  • Cho, Hye-Kyung (Department of Pediatrics, Gil Medical Center, Gachon University College of Medicine)
  • Received : 2020.07.26
  • Accepted : 2021.01.19
  • Published : 2021.09.15

Abstract

Mycoplasma pneumoniae (MP) is the most common cause of childhood bacterial pneumonia. Although macrolide is known to be effective as a first-line therapy, the proportion of macrolide resistance in MP pneumonia has strikingly increased during recent 2 decades in East Asia. This is challenging to physicians since they have to decide more often whether to use secondary treatment. Diagnostic methods to detect macrolide-resistance of MP are currently not available in Korean hospitals. Even in the diagnosis of MP infection, both serologic and molecular test have limitation: inability to differentiate current illness from carriage or asymptomatic infection. Combining these 2 diagnostic methods and excluding infection caused by other respiratory pathogens allow a more reliable diagnosis. This effort is even more demanding in recent years to keep children from unnecessary exposure to secondary antibiotics. Although several observational studies have reported that tetracycline and fluoroquinolone, which are considered in the treatment of refractory MP pneumonia, have efficacy of shortening the duration of fever and respiratory symptoms, those findings need to be proven by well-designed prospective studies. The use of tetracycline and fluoroquinolone in children is generally tolerable, as supported by many observational data. However, since concerns about side effects still remain, careful consideration about benefits and risks is needed to decide their use.

Keywords

References

  1. Korea Disease Control and Prevention Agency. Guidelines for the antibiotic use in children with lower respiratory tract infections. Cheongju (Korea): Korea Disease Control and Prevention Agency, 2017.
  2. Foy HM. Infections caused by Mycoplasma pneumoniae and possible carrier state in different populations of patients. Clin Infect Dis 1993;17 Suppl 1:S37-46. https://doi.org/10.1093/clinids/17.Supplement_1.S37
  3. Yoon IA, Hong KB, Lee HJ, Yun KW, Park JY, Choi YH, et al. Radiologic findings as a determinant and no effect of macrolide resistance on clinical course of Mycoplasma pneumoniae pneumonia. BMC Clin Infect Dis 1993;17 Suppl 1:S37-46. Dis 2017;17:402.
  4. Bebear C, Pereyre S, Peuchant O. Mycoplasma pneumoniae: susceptibility and resistance to antibiotics. Future Microbiol 2011;6:423-31. https://doi.org/10.2217/fmb.11.18
  5. Pereyre S, Goret J, Bebear C. Mycoplasma pneumoniae: current knowledge on macrolide resistance and treatment. Front Microbiol 2016;7:974. https://doi.org/10.3389/fmicb.2016.00974
  6. Lee H, Yun KW, Lee HJ, Choi EH. Antimicrobial therapy of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Expert Rev Anti Infect Ther 2018;16:23-34. https://doi.org/10.1080/14787210.2018.1414599
  7. Yang HJ, Song DJ, Shim JY. Mechanism of resistance acquisition and treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Clin Exp Pediatr 2017;60:167-74. https://doi.org/10.3345/kjp.2017.60.6.167
  8. Youn YS, Lee SC, Rhim JW, Shin MS, Kang JH, Lee KY. Early additional immune-modulators for Mycoplasma pneumoniae pneumonia in children: an observation study. Infect Chemother 2014;46:239-47. https://doi.org/10.3947/ic.2014.46.4.239
  9. Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev 2017;30:747-809. https://doi.org/10.1128/CMR.00114-16
  10. Principi N, Esposito S. Macrolide-resistant Mycoplasma pneumoniae: its role in respiratory infection. J Antimicrob Chemother 2013;68:506-11. https://doi.org/10.1093/jac/dks457
  11. Lee JK, Lee JH, Lee H, Ahn YM, Eun BW, Cho EY, et al. Clonal expansion of macrolide-resistant sequence type 3 Mycoplasma pneumoniae, South Korea. Emerg Infect Dis 2018;24:1465-71. https://doi.org/10.3201/eid2408.180081
  12. Okubo Y, Michihata N, Morisaki N, Uda K, Miyairi I, Ogawa Y, et al. Recent trends in practice patterns and impact of corticosteroid use on pediatric Mycoplasma pneumoniae-related respiratory infections. Respir Investig 2018;56:158-65. https://doi.org/10.1016/j.resinv.2017.11.005
  13. Katsukawa C, Kenri T, Shibayama K, Takahashi K. Genetic characterization of Mycoplasma pneumoniae isolated in Osaka between 2011 and 2017: decreased detection rate of macrolide-resistance and increase of p1 gene type 2 lineage strains. PLoS One 2019;14:e0209938. https://doi.org/10.1371/journal.pone.0209938
  14. Morozumi M, Takahashi T, Ubukata K. Macrolide-resistant Mycoplasma pneumoniae: characteristics of isolates and clinical aspects of community-acquired pneumonia. J Infect Chemother 2010;16:78-86. https://doi.org/10.1007/s10156-009-0021-4
  15. Suzuki S, Konno T, Shibata C, Saito H. Low incidence of macrolide-resistant Mycoplasma pneumoniae between april 2016 and march 2017 in Akita prefecture, Japan. Jpn J Infect Dis 2018;71:477-8. https://doi.org/10.7883/yoken.JJID.2018.170
  16. Waites KB, Ratliff A, Crabb DM, Xiao L, Qin X, Selvarangan R, et al. Macrolide-resistant Mycoplasma pneumoniae in the United States as determined from a national surveillance program. J Clin Microbiol 2019;57:e00968-19.
  17. Xiao L, Ratliff AE, Crabb DM, Mixon E, Qin X, Selvarangan R, et al. Molecular characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. J Clin Microbiol 2020;58:e00710-20.
  18. Narita M, Okazaki N, Ohya H, Ishida T, Miyashita N, Yamazaki T, et al. Proposed antibiotic breakpoints on Mycoplasma pneumoniae clinical isolates concerning macrolide and lincosamide antibiotics. Jpn J Mycoplasmol 2008;35:59-60.
  19. Oishi T, Takahashi K, Wakabayashi S, Nakamura Y, Ono S, Kono M, et al. Comparing antimicrobial susceptibilities among mycoplasma pneumoniae isolates from pediatric patients in japan between two recent epidemic periods. Antimicrob Agents Chemother 2019;63:e02517-18.
  20. Quanquin NM, Cherry JD. Mycoplasma and ureaplasma infections. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry's textbook of pediatric infectious diseases. Philadelphia (PA): Elsevier, 2019:1976-2003.
  21. Committee of Japanese Society of Mycoplasmology. Guiding principles for treating Mycoplasma pneumoniae pneumonia [Internet]. Committee of Japanese Society of Mycoplasmology; 2014 [cited 2020 Jun 14]. Available from: http://square.umin.ac.jp/jsm/shisin.pdf.
  22. Cardinale F, Chironna M, Chinellato I, Principi N, Esposito S. Clinical relevance of Mycoplasma pneumoniae macrolide resistance in children. J Clin Microbiol 2013;51:723-4. https://doi.org/10.1128/JCM.02840-12
  23. Lee KL, Lee CM, Yang TL, Yen TY, Chang LY, Chen JM, et al. Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010-2019. J Formos Med Assoc 2021;120(1 Pt 1):281-91. https://doi.org/10.1016/j.jfma.2020.08.018
  24. Zhou Y, Wang J, Chen W, Shen N, Tao Y, Zhao R, et al. Impact of viral coinfection and macrolide-resistant mycoplasma infection in children with refractory Mycoplasma pneumoniae pneumonia. BMC Infect Dis 2020;20:633. https://doi.org/10.1186/s12879-020-05356-1
  25. Zhou Y, Zhang Y, Sheng Y, Zhang L, Shen Z, Chen Z. More complications occur in macrolide-resistant than in macrolide-sensitive Mycoplasma pneumoniae pneumonia. Antimicrob Agents Chemother 2014;58:1034-8. https://doi.org/10.1128/AAC.01806-13
  26. Wu HM, Wong KS, Huang YC, Lai SH, Tsao KC, Lin YJ, et al. Macrolide-resistant Mycoplasma pneumoniae in children in Taiwan. J Infect Chemother 2013;19:782-6. https://doi.org/10.1007/s10156-012-0523-3
  27. Cheong KN, Chiu SS, Chan BW, To KK, Chan EL, Ho PL. Severe macrolide-resistant Mycoplasma pneumoniae pneumonia associated with macrolide failure. J Microbiol Immunol Infect 2016;49:127-30. https://doi.org/10.1016/j.jmii.2014.11.003
  28. Jacobs E. Serological diagnosis of Mycoplasma pneumoniae infections: a critical review of current procedures. Clin Infect Dis 1993;17 Suppl 1:S79-82. https://doi.org/10.1093/clinids/17.Supplement_1.S79
  29. Yoo SJ, Oh HJ, Shin BM. Evaluation of four commercial IgG- and IgM-specific enzyme immunoassays for detecting Mycoplasma pneumoniae antibody: comparison with particle agglutination assay. J Korean Med Sci 2007;22:795-801. https://doi.org/10.3346/jkms.2007.22.5.795
  30. Barker CE, Sillis M, Wreghitt TG. Evaluation of Serodia Myco II particle agglutination test for detecting Mycoplasma pneumoniae antibody: comparison with mu-capture ELISA and indirect immunofluorescence. J Clinic Pathol 1990;43:163-5. https://doi.org/10.1136/jcp.43.2.163
  31. Templeton KE, Scheltinga SA, Graffelman AW, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of real-time PCR, realtime nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J Clin Microbiol 2003;41:4366-71. https://doi.org/10.1128/JCM.41.9.4366-4371.2003
  32. Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med 2013;10:e1001444. https://doi.org/10.1371/journal.pmed.1001444
  33. Kim NH, Lee JA, Eun BW, Shin SH, Chung EH, Park KW, et al. Comparison of polymerase chain reaction and the indirect particle agglutination antibody test for the diagnosis of Mycoplasma pneumoniae pneumonia in children during two outbreaks. Pediatr Infect Dis J 2007; 26:897-903. https://doi.org/10.1097/INF.0b013e31812e4b81
  34. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Eng J Med 2015;372:835-45. https://doi.org/10.1056/NEJMoa1405870
  35. Ma YJ, Wang SM, Cho YH, Shen CF, Liu CC, Chi H, et al. Clinical and epidemiological characteristics in children with community-acquired mycoplasma pneumonia in Taiwan: a nationwide surveillance. J Microbiol Immunol Infect 2015;48:632-8. https://doi.org/10.1016/j.jmii.2014.08.003
  36. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 2004;113:701-7. https://doi.org/10.1542/peds.113.4.701
  37. Han MS, Yun KW, Lee HJ, Park JY, Rhie K, Lee JK, et al. Contribution of co-detected respiratory viruses and patient age to the clinical manifestations of Mycoplasma pneumoniae pneumonia in children. Pediatr Infect Dis J 2018;37:531-6. https://doi.org/10.1097/INF.0000000000001819
  38. Chiu CY, Chen CJ, Wong KS, Tsai MH, Chiu CH, Huang YC. Impact of bacterial and viral coinfection on mycoplasmal pneumonia in childhood community-acquired pneumonia. J Microbiol Immunol Infect 2015;48:51-6. https://doi.org/10.1016/j.jmii.2013.06.006
  39. Li J, Wang X, Wang M, Wang C, Song G. Analyze on the influence of minocycline combined with azithromycin on serum CRP, D-Dimer and lung function in the children with refractory mycoplasma pneumonia. Chin J Biochem Pharm 2017;37:102-5.
  40. Han X, Miao N, Wen H, Wang C. Minocycline in children with macrolide-resistant Mycoplasma pneumoniae pneumonia. J Pediatr Pharm 2016;22:17-9.
  41. Ishiguro N, Koseki N, Kaiho M, Ariga T, Kikuta H, Togashi T, et al. Therapeutic efficacy of azithromycin, clarithromycin, minocycline and tosufloxacin against macrolide-resistant and macrolide-sensitive Mycoplasma pneumoniae pneumonia in pediatric patients. PLoS One 2017;12:e0173635. https://doi.org/10.1371/journal.pone.0173635
  42. Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, et al. Therapeutic efficacy of macrolides, minocycline, and tosufloxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob Agents Chemother 2013;57:2252-8. https://doi.org/10.1128/AAC.00048-13
  43. Okada T, Morozumi M, Tajima T, Hasegawa M, Sakata H, Ohnari S, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant Mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children. Clin Infect Dis 2012;55:1642-9. https://doi.org/10.1093/cid/cis784
  44. Ha SG, Oh KJ, Ko KP, Sun YH, Ryoo E, Tchah H, et al. Therapeutic Efficacy and safety of prolonged macrolide, corticosteroid, doxycycline, and levofloxacin against macrolide-unresponsive Mycoplasma pneumoniae pneumonia in children. J Korean Med Sci 2018;33:e268. https://doi.org/10.3346/jkms.2018.33.e268
  45. Yang TI, Chang TH, Lu CY, Chen JM, Lee PI, Huang LM, et al. Mycoplasma pneumoniae in pediatric patients: do macrolide-resistance and/or delayed treatment matter? J Microbiol Immunol Infect 2019; 52:329-35. https://doi.org/10.1016/j.jmii.2018.09.009
  46. Suzuki S, Yamazaki T, Narita M, Okazaki N, Suzuki I, Andoh T, et al. Clinical evaluation of macrolide-resistant Mycoplasma pneumoniae. Antimicrob Agents Chemother 2006;50:709-12. https://doi.org/10.1128/AAC.50.2.709-712.2006
  47. Carris NW, Pardo J, Montero J, Shaeer KM. Minocycline as a substitute for doxycycline in targeted scenarios: a systematic review. Open Forum Infect Dis 2015;2:ofv178. https://doi.org/10.1093/ofid/ofv178
  48. Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clin Ther 2005;27:1329-42. https://doi.org/10.1016/j.clinthera.2005.09.005
  49. Todd SR, Dahlgren FS, Traeger MS, Beltran-Aguilar ED, Marianos DW, Hamilton C, et al. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever. J Pediatr 2015;166:1246-51. https://doi.org/10.1016/j.jpeds.2015.02.015
  50. Volovitz B, Shkap R, Amir J, Calderon S, Varsano I, Nussinovitch M. Absence of tooth staining with doxycycline treatment in young children. Clin Pediatr 2007;46:121-6. https://doi.org/10.1177/0009922806290026
  51. Forti G, Benincori C. Doxycycline and the teeth. Lancet 1969;1:782. https://doi.org/10.1016/S0140-6736(69)91787-5
  52. Sanchez AR, Rogers RS 3rd, Sheridan PJ. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int J Dermatol 2004;43:709-15. https://doi.org/10.1111/j.1365-4632.2004.02108.x
  53. Abramson JS, Givner LB. Should tetracycline be contraindicated for therapy of presumed Rocky Mountain spotted fever in children less than 9 years of age? Pediatrics 1990;86:123-4. https://doi.org/10.1542/peds.86.1.123
  54. Burkhardt JE, Walterspiel JN, Schaad UB. Quinolone arthropathy in animals versus children. Clin Infect Dis 1997;25:1196-204. https://doi.org/10.1086/516119
  55. Yee CL, Duffy C, Gerbino PG, Stryker S, Noel GJ. Tendon or joint disorders in children after treatment with fluoroquinolones or azithromycin. Pediatr Infect Dis J 2002;21:525-9. https://doi.org/10.1097/00006454-200206000-00009
  56. Noel GJ, Bradley JS, Kauffman RE, Duffy CM, Gerbino PG, Arguedas A, et al. Comparative safety profile of levofloxacin in 2523 children with a focus on four specific musculoskeletal disorders. Pediatr Infect Dis J 2007;26:879-91. https://doi.org/10.1097/INF.0b013e3180cbd382
  57. Bradley JS, Kauffman RE, Balis DA, Duffy CM, Gerbino PG, Maldonado SD, et al. Assessment of musculoskeletal toxicity 5 years after therapy with levofloxacin. Pediatrics 2014;134:e146-53. https://doi.org/10.1542/peds.2013-3636
  58. Bradley JS, Arguedas A, Blumer JL, Saez-Llorens X, Melkote R, Noel GJ. Comparative study of levofloxacin in the treatment of children with community-acquired pneumonia. Pediatr Infect Dis J 2007;26:868-78. https://doi.org/10.1097/INF.0b013e3180cbd2c7
  59. U.S. Food and Drug Administration. Clinical review for new drug applications 19-537/S-049, 20-780/S-013, 19-847/S-027, and 19-857/S-031. Silver Spring (MD): U.S. Food and Drug Administration, 2020.
  60. Jackson MA, Schutze GE. The use of systemic and topical fluoroquinolones. Pediatrics 2016;138:e20162706. https://doi.org/10.1542/peds.2016-2706
  61. Takeuchi N, Ohkusu M, Hoshino T, Naito S, Takaya A, Yamamoto T, et al. Emergence of quinolone-resistant strains in Streptococcus pneumoniae isolated from paediatric patients since the approval of oral fluoroquinolones in Japan. J Infect Chemother 2017;23:218-23. https://doi.org/10.1016/j.jiac.2016.12.012
  62. Guo DX, Hu WJ, Wei R, Wang H, Xu BP, Zhou W, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study. Bosn J Basic Med Sci 2019;19:288-96.
  63. Qu J, Chen S, Bao F, Gu L, Cao B. Molecular characterization and analysis of Mycoplasma pneumoniae among patients of all ages with communityacquired pneumonia during an epidemic in China. Int J Infect Dis 2019;83:26-31. https://doi.org/10.1016/j.ijid.2019.03.028
  64. Xue G, Li M, Wang N, Zhao J, Wang B, Ren Z, et al. Comparison of the molecular characteristics of Mycoplasma pneumoniae from children across different regions of China. PLoS One 2018;13:e0198557. https://doi.org/10.1371/journal.pone.0198557
  65. Yan C, Yang H, Sun H, Zhao H, Feng Y, Xue G, et al. Diversity in genotype distribution of Mycoplasma pneumoniae obtained from children and adults. Jpn J Infect Dis 2020;73:14-8. https://doi.org/10.7883/yoken.JJID.2019.037
  66. Yan C, Xue G, Zhao H, Feng Y, Li S, Cui J, et al. Molecular and clinical characteristics of severe Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol 2019;54:1012-21. https://doi.org/10.1002/ppul.24327
  67. Yuan C, Min FM, Ling YJ, Li G, Ye HZ, Pan JH, et al. Clinical characteristics and antibiotic resistance of Mycoplasma pneumoniae pneumonia in hospitalized Chinese children. Comb Chem High Throughput Screen 2018;21:749-54.
  68. Zhao F, Li J, Liu J, Guan X, Gong J, Liu L, et al. Antimicrobial susceptibility and molecular characteristics of Mycoplasma pneumoniae isolates across different regions of China. Antimicrob Resist Infect Control 2019;8:143. https://doi.org/10.1186/s13756-019-0576-5
  69. Zhao F, Liu J, Xiao D, Liu L, Gong J, Xu J et al. Pathogenic analysis of the bronchoalveolar lavage fluid samples with pediatric refractory Mycoplasma pneumoniae pneumonia. Front Cell Infect Microbiol 2020;10:553739. https://doi.org/10.3389/fcimb.2020.553739
  70. Akashi Y, Hayashi D, Suzuki H, Shiigai M, Kanemoto K, Notake S, et al. Clinical features and seasonal variations in the prevalence of macrolide-resistant Mycoplasma pneumoniae. J Gen Fam Med 2018;19:191-7. https://doi.org/10.1002/jgf2.201
  71. Ando M, Morozumi M, Adachi Y, Ubukata K, Iwata S. Multilocus sequence typing of Mycoplasma pneumoniae, Japan, 2002-2016. Emerg Infect Dis 2018;24:1895-901. https://doi.org/10.3201/eid2410.171194
  72. Kawakami N, Namkoong H, Saito F, Ishizaki M, Yamazaki M, Mitamura K. Epidemiology of macrolide-resistant Mycoplasma pneumoniae by age distribution in Japan. J Infect Chemother 2021;27:45-8. https://doi.org/10.1016/j.jiac.2020.08.006
  73. Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, et al. Periodic genotype shifts in clinically prevalent Mycoplasma pneumoniae strains in Japan. Front Cell Infect Microbiol 2020;10:385. https://doi.org/10.3389/fcimb.2020.00385
  74. Lee E, Young Lee Y. Risk factors for the development of post-infectious bronchiolitis obliterans after Mycoplasma pneumoniae pneumonia in the era of increasing macrolide resistance. Respir Med 2020;175:106209. https://doi.org/10.1016/j.rmed.2020.106209
  75. Hung HM, Chuang CH, Chen YY, Liao WC, Li SW, Chang IY, et al. Clonal spread of macrolide-resistant Mycoplasma pneumoniae sequence type-3 and type-17 with recombination on non-P1 adhesin among children in Taiwan. Clin Microbiol Infect 2020;S1198-743X(20)30588-7. https://doi.org/10.1016/j.cmi.2020.09.035. [Epub].
  76. Lu CY, Yen TY, Chang LY, Liau YJ, Liu HH, Huang LM. Multiplelocus variable-number tandem-repeat analysis (MLVA) of macrolidesusceptible and -resistant Mycoplasma pneumoniae in children in Taiwan. J Formos Med Assoc 2020;119:1539-45. https://doi.org/10.1016/j.jfma.2019.12.008
  77. Dumke R, Ziegler T. Long-term low rate of macrolide-resistant Mycoplasma pneumoniae strains in Germany. Antimicrob Agents Chemother 2019;63:e00455-19.
  78. Voronina EN, Gordukova MA, Turina IE, Mishukova OV, Dymova MA, Galeeva EV, et al. Molecular characterization of Mycoplasma pneumoniae infections in Moscow from 2015 to 2018. Eur J Clin Microbiol Infect Dis 2020;39:257-63. https://doi.org/10.1007/s10096-019-03717-6
  79. Kogoj R, Praprotnik M, Mrvic T, Korva M, Kese D. Genetic diversity and macrolide resistance of Mycoplasma pneumoniae isolates from two consecutive epidemics in Slovenia. Eur J Clin Microbiol Infect Dis 2018;37:99-107. https://doi.org/10.1007/s10096-017-3106-5
  80. Rivaya B, Jordana-Lluch E, Fernandez-Rivas G, Molinos S, Campos R, Mendez-Hernandez M, et al. Macrolide resistance and molecular typing of Mycoplasma pneumoniae infections during a 4 year period in Spain. J Antimicrob Chemother 2020;75:2752-9. https://doi.org/10.1093/jac/dkaa256
  81. Gullsby K, Olsen B, Bondeson K. Molecular typing of Mycoplasma pneumoniae strains in Sweden from 1996 to 2017 and the emergence of a new P1 cytadhesin gene, variant 2e. J Clin Microbiol 2019;57:e00049-19.
  82. Wagner K, Imkamp F, Pires VP, Keller PM. Evaluation of lightmix Mycoplasma macrolide assay for detection of macrolide-resistant Mycoplasma pneumoniae in pneumonia patients. Clin Microbiol Infect 2019;25:383. e5-383.e7. https://doi.org/10.1016/j.cmi.2018.10.006
  83. Copete AR, Aguilar YA, Rueda ZV, Velez LA. Genotyping and macrolide resistance of Mycoplasma pneumoniae identified in children with community-acquired pneumonia in Medellin, Colombia. Int J Infect Dis 2018;66:113-20. https://doi.org/10.1016/j.ijid.2017.11.019
  84. Carrim M, Wolter N, Benitez AJ, Tempia S, du Plessis M, Walaza S, et al. Epidemiology and molecular identification and characterization of Mycoplasma pneumoniae, South Africa, 2012-2015. Emerg Infect Dis 2018;24:506-13. https://doi.org/10.3201/eid2403.162052