• Title/Summary/Keyword: fluoropolymer

Search Result 38, Processing Time 0.028 seconds

Studies on the consolidants and water-repellents of stone cultural properties (석조문화재 발수경화제 시험연구(II))

  • Eom, Doo-Sung;Kim, Sa-Dug;Hong, Jung-Ki;Kang, Dai-Ill;Lee, Myeong-Hui
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.133-154
    • /
    • 2001
  • Stone cultural properties, exposed in natural environment, is deteriorated by many weathering reasons for a long time. It is necessary to treat of consolidation and water-repellent on the surface because of the conservation of stone cultural properties. We was treated the specimen [granite(Hwangdung-suk), sandstone, marble(in JeongSeon)] by synthesis resin of DWR-Ⅲ, SI2121 and fluoropolymer, and tested on the durability, water-repellent, color stability and luster generation etc. In the result of this study, DWR-Ⅲ and fluoropolymer is superior to the waterrepellent, durability of salt and acid rain. SI2121 is superior to the penetration because of lower viscosity, but the water-repellent is inferior to the others. After the treatment of chemicals, the color-variation make an appearance but luster-generation doesn’t. With the passage of time, the color of specimen was got better because of the ‘washing’ phenomenon for ultra-violet, salt etc.

  • PDF

Nanoscale Fluoropolymer Pattern Fabrication by Capillary Force Lithography for Selective Deposition of Copper

  • Baek, Jang-Mi;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.369-369
    • /
    • 2012
  • The present work deals with selective deposition of copper on fluoropolymers patterned silicon (111) surfaces. The pattern of fluoropolymer was fabricated by nanoimprint lithography (NIL) and plasma reactive ion etching (RIE) was used to remove the residuals layers. Copper was electrochemically deposited in bare Si regions which were not covered with fluoropolymers. The patterns of fluoropolymers and copper have been investigated by scanning electron microscopy (SEM). In this work, we used two deposition methods. One is galvanic displacement method and another is electrodeposition. Selective deposition works in both cases and it shows applicability to other materials. By optimization of the deposition conditions can be achieved therefore this process represents a simple approach for a direct high resolution patterning of silicon surfaces.

  • PDF

Surface Functionalization of a Fluoropolymer by Ion Beam-induced Graft Polymerization of 4-Vinyl Pyridine

  • Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2010
  • The surface functionalization of a fluoropolymer by ion beam-induced graft polymerization was described in this research. The surface of poly(tetrafluoroethylene) (PTFE) films were irradiated by a 150 keV $H^+$ ions, and 4-vinyl pyridine (4VP) as a functional monomer was then thermally graft polymerized on the irradiated surface. The surface properties of poly(4-vinyl pyridine) (P4VP)-grafted PTFE films were investigated in terms of grafting degree, wettability, chemical structure, and morphology. The results revealed that the surface of PTFE films was successfully functionalized by ion beam-induced graft polymerization of 4VP.

Preparation of Poly(vinylbenzyl chloride)-grafted Fluoropolymer Films by Using Radiation Grafting Method (방사선 그래프팅에 의한 염화비닐벤질 고분자가 그래프트된 불소필름의 제조)

  • Fei, Geng;Sohn, Joon-Yong;Lee, Youn-Sik;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.464-468
    • /
    • 2010
  • In this study, a vinylbenzyl chloride (VBC) monomer was successfully grafted onto the several fluoropolymer films including poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA), and poly(ethylene-co-tetrafluoroethylene) (ETFE) films by using a simultaneous irradiation method. The results indicated that PVBC graft polymer can be easily grafted onto the ETFE film than other fluorinated films under the same irradiation condition. The grafted films were characterized by using FTIR, TGA, and SEM-EDS instruments. The elongation at the breaking of the grafted films was found to decrease with an increase of degree of grafting (DOG). The PVBC-grafted ETFE films were found to have better mechanical properties than other PVBC-grafted fluorinated films.

Investigation into the Thermal Stability of Fluoropolymer Coating for Heat-Resistant Application (내열성 불소수지 코팅막의 열 안정성에 관한 연구)

  • Cho, Hey-Jin;Ryu, Ju-Hwan;Byun, Doo-Jin;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.96-101
    • /
    • 2005
  • Fluoropolymer of PTFE and PFA etc. is a heat resistance polymeric material that it is known as that maximum continuous use temperature reaches for 260 $^{\circ}C$. It was observed that these polymers had the enough thermal stability so enough that it was kept by thermal aging of 280 $^{\circ}C$/7 weeks too in this study. However, such thermal stability means that bulk material property is kept such as mechanical strength, melting point and initial pyrolysis temperature etc. If these polymers are evaluate by coating property such as surface contact angle, surface morphology, surface scratch, thing that heat resistance is not enough was confirmed in this study. Thermal aging of flouropolymer coating was achieved by gear aging oven that the exchange rate of air was controlled, and the analysis results were indicating serious damage of surface morphology and adhesive strength on metal substrate.

Anomalous Permeation Observed in Fluoropolymer

  • Lee, Sang-Wha
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Compatibility of polymeric materials governs their suitability for nearly all potential applications. An aspect of compatibility that is frequently important for fluoropolymers is their ability to isolate fluids by serving as a barrier to mass transport. This property is commonly expressed as permeability. In ideal cases, both solubility and diffusivity are constant at any given temperature and so the permeability is also a constant.(omitted)

  • PDF

Changes of Surface Characteristics of Polyester Fabrics on the Deposition and the Removal of Oily Soils (I) - The Effect of Wash Cycles on the Water- and Oil-repellent Finished Fabrics in Detergency - (유성오구의 부착과 제거에 있어서 폴리에스테르 직물의 표면특성 변화 (I) -발수발유 가공포의 반복세척 효과-)

  • 이정숙;하희정
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.24-35
    • /
    • 1999
  • This study was carried out to investigate the changes of surface characteristics of polyester fabrics on the deposition and the removal of oily soils from polyester fabrics in detergency, The relations between the removal of soil and the changes of surface properties of polyester fabrics treated with water- and oil-repellent agents were discussed before and after various wash cycles. Two kinds of fluoropolymers were selected as water-and oil-repellent finishing agents. The effects of water- and oil-repellent finishes were determined by the water repellency and oil repellency. The surface properties of untreated and treated polyester fabrics were evaluated with respect to contact angle and wicking time. The treatment of polyester fabrics with fluoropolymers improved efficiently water repellency, oil repellency, contact angle and wicking time. But those properties were greatly decreased after 3 times of wash cycles in detergency The deposition of oily soils on the untreated fabrics was drastically increased with increasing of wash cycles. The deposition and the removal of oily soils from fabrics treated with fluoropolymer having hydrophobic components were very low after various wash cycles. The deposition and the removal of oily soils on the fabrics treated with fluoropolymer having hydrophilic components were high comparatively after various wash cycles. Even though the surface properties of treated fabrics were greatly decreased with the increasing of wash cycles, the remains of oily soils on the fabrics were lower than those of untreated fabrics in various wash cycles. But the remains of soils were drastically increased after 10 times of wash cycles in any cases.

  • PDF

Effect on the Electrical Characteristics of OLEDs Depending on Amorphous Fluoropolymer (유기발광다이오드의 전기적 특성에 미치는 Teflon-AF의 영향)

  • Shim, Sang-Min;Han, Hyun-Suk;Kang, Yong-Gil;Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.750-754
    • /
    • 2011
  • In this research, the electric characteristic of organic light-emitting diodes(OLEDs) was studied depending on thickness of amorphous fluoropolymer(Teflon-AF) which is the material of hole injection layer to improve electric characteristic of OLEDs. Sample composition was fabricated in double layer. The basic structure was fabricated by ITO/tris(8-hydroxyquinoline) aluminum (Alq3)/Al and the 2 layer was fabricated by ITO/2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole(Teflon-AF)/tris(8-hydro xyquinoline) aluminum (Alq3)/Al. The experiment was carried with variation of thickness of Teflon-AF at 1.0, 2.0, 2.5, 3.0 nm. The result showed when Teflon-AF thickness was 2.5 nm, the electric and optical characteristic were well performed. Moreover, when it was compared with Teflon-AF without materials, it was improved 15.1 times more on luminance, 12.7 times more on luminous efficiency and 12.1 times more on external quantum efficiency. Therefore, OLEDs element with optimum hole injection layer reduced energy barrier and driving voltage, and confirmed that it improved efficiency widely.