• Title/Summary/Keyword: fluorine treatment

Search Result 101, Processing Time 0.033 seconds

Surface Property of PET Fabric Treated with $CF_4$ Plasma and $C_2F_6$ Plasma (플루오르 화합물을 플라즈마 처리한 PET 직물의 표면특성)

  • 김태년;모상영
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • PET fabric was grafted with $CF_4$ or $C_2F_6$ plasmas generated by glow discharge. The water repellency of plasma-treated fabrics were evaluated with contact angle meter. The change in surface morphologies was observed by SEM, and the change of surface chemical characteristics were analyzed by FT-IR, ESCA and microchemical analysis technique. The results obtained are as follows : 1) The contact angle of plasma-treated fabric was over $150^\circ{C}$. 2) It was observed by SEM that the surface of treated substrate was over coated with thin film formed by the fluorocarbon plasma treatment. 3) According to ESCA analysis, there were prevailing -CHF-, $-CF_2$- and a little $-CF_3$ components on fluorocarbon plasma treated substrate. -CHF- and $-CF_2$- components were reduced by washing, and $-CF_2$- component was recovered by heat treatment. 4) In consideration of quantitative analysis of fluorine and F/C ratio by ESCA, we found that fluorination reached to the inner of substrate.

  • PDF

Bioinspired Metal Surfaces by Plasma Treatment

  • Yu, Ui-Seon;Go, Tae-Jun;O, Gyu-Hwan;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Effect of fluorine gas addition for improvement of surface wear property of DLC thin film deposited by using PECVD (PECVD를 이용한 DLC 박막의 표면 마모 특성 향상을 위한 플루오린 첨가의 영향)

  • Park, Hyun-Jun;Kim, Jun-Hyung;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.357-364
    • /
    • 2021
  • In this study, DLC films deposited by PECVD were evaluated to the properties of super-hydrophobic by CF4 treatment. The structure of DLC films were confirmed by Raman Spectra whether or not mixed sp3 (like diamond) peak and sp2 (like graphite) peak. And the hydrogen contents in the DLC films (F-DLC) were measured by RBS analysis. In addition, DLC films were analyzed by scratch test for adhesion, nano-indentation for hardness and tribo-meter of Ball-on-disc type for friction coefficient. In the result of analysis, DLC films had traditional structure regardless of variation of hardness at constant conditions. Also adhesion of DLC film was increased as higher material hardness. Otherwise, friction coefficient was increased as lower material hardness. The DLC films were treated by CF4 plasma treatment to enhance the properties of super-hydrophobic. And the DLC films were measured by ESEM(Enviromental Scanning Electron Microscope) for water condensation.

Use of Resin Infiltrant to Prevent Discoloration after Teeth Whitening

  • Min, Ji-Hyun
    • Journal of dental hygiene science
    • /
    • v.22 no.3
    • /
    • pp.156-163
    • /
    • 2022
  • Background: This study attempted to apply resin infiltrant (RI) as a method to maintain the effect of tooth bleaching treatment and compared it with fluoride varnish (FV) or artificial saliva to evaluate the effect. Methods: Sixty healthy lozenge specimens were classified into five groups. Group 1 was the negative control group, and discoloration was induced after artificial saliva treatment of the tooth specimen (G1S+C). Group 2 was a positive control group, in which pigmentation was induced after bleaching treatment and artificial saliva treatment (G2 B+S+C). Coloration was induced in group 3 (experimental group 1) after bleaching treatment and artificial saliva treatment, followed by application of fluorine varnish (G3B+FV+S+C). Coloration was induced in Group 4 (experimental group 2) after applying RI after bleaching treatment and artificial saliva treatment (G4B+RI+S+C). Pigmentation was induced in group 5 (experimental group 3) after bleaching treatment and artificial saliva treatment, followed by acid treatment (etching) and treatment with RI (G5B+E+RI+S+C). Coffee and wine were used to induce discoloration. The lightness value (L*) of the CIE L*a*b* color system was obtained by image analysis. Kruskal-Wallis H analysis was performed for the mean difference in L* values by group. Results: When coloration was induced with coffee, there was no significant difference in L* value between artificial saliva (G2 B+S+C), FV (G3B+FV+S+C), and RI (G4B+RI+S+C, G5B+E+RI+S+C) groups. There was no significant difference in L* values between the artificial saliva (G2 B+S+C), FV (G3B+FV+S+C), and RI (G4B+RI+S+C, G5B+E+RI+S+C) groups, even in the case of wine induced coloration. Conclusion: It was confirmed that artificial saliva or RI treatment had similar effects to the FV previously used to maintain the effect of tooth bleaching treatment.

Effect of FTO coated on stainless steel bipolar plate for PEM fuel cells

  • Park, Ji-Hun;Jang, Won-Yeong;Byeon, Dong-Jin;Lee, Jung-Gi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.55.2-55.2
    • /
    • 2009
  • A polymer electrolyte membrane (PEM) fuel cell has been getting large interest as a typical issue in useful applications. The PEMFC is composed of a membrane, catalyst and the bipolar plate. SnOx:F films on SUS316 stainless steel were prepared as a function of substrate with using electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) in order to achieve the corrosion-resistant and low contact resistance bipolar plates for PEM fuel cells. The SnOx:F films coated on SUS316 substrate at surface plasma treatment for excellent stability, before/after heat treatment for good crystalline structure and microwave power for were characterized by X-ray diffraction (XRD), auger electron microscopy (AES) and field emission-scanning electron microscopy (FE-SEM). The SnOx:F film coated on SUS316 substrate with various process parameters were able to observe optimum interfacial contact resistance (ICR) and corrosion resistance. It can be concluded that fluorine-doping content plays an important function in electrical property and characteristic of corrosion-protective film.

  • PDF

Synthesis of [18F]-Labelled Nebivolol as a β1-Adrenergic Receptor Antagonist for PET Imaging Agent (베타1-아드레날린 수용체를 표적으로 하는 심근영상제로서 18F 표지된 nebivolol의 합성)

  • Kim, Taek-Soo;Park, Jeong Hoon;Lee, Jun Young;Yang, Seung Dae;Chang, Dong-Jo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2016
  • Selective ${\beta}_1$-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective ${\beta}_1$-antagonists including nebivolol have high binding affinity on ${\beta}_1$-adrenergic receptor, not ${\beta}_2$-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective ${\beta}_1$-blockers in clinically used ${\beta}_1$-blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective ${\beta}_1$-blocker. Nebivolol is $C_2$-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of $^{18}F$. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for $^{18}F$-aromatic substitution, was synthesized in moderate yield which was readily subjected to $^{18}F$-aromatic substitution to give $^{18}F$-labelled nebivolol.

Improving CO2 Adsorption Performance of Activated Carbons Treated by Plasma Reaction with Tetrafluoromethane (사불화탄소 플라즈마 반응에 의해 처리된 활성탄소의 CO2 흡착 성능 향상)

  • Chung Gi Min;Chaehun Lim;Seo Gyeong Jeong;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.170-174
    • /
    • 2023
  • CO2 is known as one of the causes of global warming, and various studies are being conducted to capture it. In this study, a tetrafluoromethane (CF4) plasma reaction was performed to improve the CO2 adsorption of activated carbons (ACs) through changes in surface characteristics, and the adsorption characteristics according to the reaction time were considered. After the reaction, the micropore volume increased up to 1.03 cm3/g. In addition, as the reaction time increased, the fluorine content on the surface increased to 0.88%. It was possible to simultaneously control the pore properties and surface functional groups of the ACs through this experiment. Also, the CO2 uptake of surface-treated ACs improved up to 7.44% compared to untreated ACs, showing the best performance at 3.90 mmol/g when the reaction time was 60 s. This is due to the synergy effect of the fluorine functional groups introduced on the surface of the ACs and the increased micropore volume caused by the etching effect. It was found that the micropore volume had a greater effect on CO2 adsorption in the region where the CO2 uptake was less than 3.67 mmol/g, while the added fluorine content had a greater effect in the region above that.

A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication (우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • This study Provides the treatment methods of liquid wastes from the dissolution/purification process of nuclear fuel raw material and the fabrication process of nuclear fuel powder. One of the treatment methods is to process liquid waste from uranium raw material dissolution/purification process. This waste, of the strong acid, can be reused to dissolve the fine ADU particles in filtrate which is ADU waste of pH 8.0 converted from AUC waste after recovery of uranium. To dissolve the fine ADU particles, ADU filtrate was pretreated to pH 4.0 with the dissolution/purification waste, and then mixed with the lime to pH 9.2 and aged for 30 minutes. From this processing, uranium content of the filtrate was decreased to below 3ppm. The waste from fuel powder fabrication is emulsified solution dispersed with fine oil droplets. This emulsion was destroyed effectively by adding and mixing the nitric acid with rapid heating at the same time. After this processing, $Na_2U_2O_7$ compound is produced by addition of NaOH. Optimum condition of this processing was shown at pH 11.5, and uranium content of the filtrate was analyzed to 5ppm. To remove the trace of uranium in the filtrate, lime should be added. Otherwise, 4N nitric acid was used to destroy the emulsion directly, and then lime was added to this waste. Uranium content of the treated filtrate was below 1 ppm. In addition to these wastes, the trace of uranium in filtrate after recovery of uranium from the AUC waste which is produced during PWR power preparation, is treated with NaOH to takeup fluorine(F) in the waste because fluorine is valuable and toxic material. In the finally treated waste, uranium was not detected.

  • PDF

Effect of Plasma Treatment with O2, Ar, and N2 Gas on Porous TiO2 for Improving Energy Conversion Efficiency of DSSC (Dye Sensitized Solar Cell)

  • Gang, Go-Ru;Sim, Seop;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.202-202
    • /
    • 2012
  • 염료감응태양전지(DSSC)의 광변환 효율을 향상시키기 위하여 진공챔버에서 450도 고온에서 O2, Ar, and N2 혼합가스를 주입하여 다양한 plasma로 TiO2 박막을 처리하면서 소성시켰다. TiO2 표면을 cleaning하고 활성화함으로서 염료의 결합력을 향상시키는 것 외에 TiO2 내부의 oxygen vacancy를 변화를 관찰하였다. 실험에 사용한 박막은 glass 위에 FTO 박막을 입히고, 다공성 TiO2 나노입자 박막을 코팅하여 제조하였다(porous TiO2 나노입자(${\sim}12{\mu}m$)/FTO(Fluorine doped Tin oxide; $1{\mu}m$)/glass). 완성된 광전극에 대해서 XRD, XPS, EIS, FE-SEM 등을 이용하여 분석하였다. 또한 이렇게 전처리된 광전극을 사용한 DSSC를 제작하였다. 그리고 Solar-simulator를 통해 그 효율을 측정하여 '플라즈마환경에서 소성된 광전극에 대한 DSSC의 광변환효율에 미치는 효과'을 고찰하였다.

  • PDF

Breakdown characteristics of gate oxide with tungsten polycide electrode (텅스텐 폴리사이드 전극에 따른 게이트 산화막의 내압 특성)

  • 정회환;이종현;정관수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.77-82
    • /
    • 1996
  • The breakdown characteristics of metal-oxide-semiconductor(MOS) capacitors fabricated by Al, polysilicon, and tungsten polycide gate electrodes onto gate oxide was evaluated by time zero dielectric breakdwon (TZDB). The average breakdown field of the gate oxide with tungsten polycide electride was lower than that of the polysilicon electrode. The B model (1~8MV/cm) failure of the gate oxide with tungsten polycide electrode was increased with increasing annealing temperature in the dry $O_{2}$ ambient. This is attributed ot fluorine and tungsten diffusion from thungsten silicide film into the gate oxide, and stress increase of tungsten polcide after annealing treatment.

  • PDF