• Title/Summary/Keyword: fluorinated

Search Result 314, Processing Time 0.029 seconds

Structure and Bonding of Ni(C6H4-nFn)(CO)2 (C6H4=benzyne, n=1-4) Complexes (Ni(C6H4-nFn)(CO)2 (C6H4=benzyne, n=1-4) 착물의 구조 및 화학결합)

  • Ghiasi, Reza;Hashemian, Saeedeh;Irajee, Oranoos
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • The electronic structure and properties of Ni$(C_6H_{4-n}F_n)(CO)_2$ ($C_6H_4$=benzyne, n=1-4) complexes have been investigated using hybrid density functional B3LYP theory. Both aromatic natures and nucleus independent chemical shift (NICS) of the benzyne rings have been analyzed. Among mono-, di-, and tri-fluorinated complexes, 3-F, 3,6-F, and 4-H are the most stable isomers, respectively. NICS values calculated at the several points above the ring centers are consistent with those based on the relative energies of the complexes. The atoms in molecules (AIM) analysis indicates that Ni-C bond distance is well correlated with the electron density of a ring critical point (${\rho}_{rcp}$) in all species.

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames (메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.839-845
    • /
    • 2011
  • We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and I and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have ·to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then tile on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to from a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5 : 1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin’s moisture. Vitamins A and I contribute to preventing skin’aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer, The crystal 1 me structures of gel were surface-chemical1y-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC, Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Baegeon and Pusan in Korea and Hokkaido, Oska and Miyazaki in Japan with correlation to the climate.

  • PDF

Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments (플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성)

  • Kim, Jun;Lee, Won-Ki;Ryou, Jin-Ho;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • Since the enzymatic degradation of microbial poly(hydroxylalkanoate)s (PHAs), such as poly[(R)-3-hydroxybutyrate] and poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] initially occurs by a surface erosion process, their degradation behaviors can be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma modification technique was applied to change the surface property of microbial PHAs. The surface hydrophobic and hydrophilic properties of PHA films were introduced by $CF_3H$ and $O_2$ plasma exposures, respectively. The enzymatic degradation was carried out at $37^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. The results showed that the significant retardation of initial enzymatic erosion of $CF_3H$ plasma-treated PHAs was observed due to the hydrophobicity and the enzyme inactivity of the fluorinated surface layers while the erosion rate of $O_2$ plasma-treated PHAs was not accelerated.

  • PDF

Effect of Treatment Conditions of Eco-friendly Fluorinated Water-repellent Agent and Design Applications: Silk Fabrics with DTP Finishing (나노잉크 및 반응성잉크를 사용한 DTP 견직물의 친환경 불소계 발수제에 의한 가공효과 연구)

  • Choi, Kyungme;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.5
    • /
    • pp.159-170
    • /
    • 2014
  • Recent concerns about the PFOA(perfluorooctanoic acid), have been increasing, which is generally applied in the water-repellent finishing process of textile products. It has been proven through animal testing to be harmful to humans, as possible carcinogens and neuro-toxic material. Thus U. S. Environmental Agency has gone as far as requiring the material to be eliminated in its entirety by 2015. As a viable alternative to this water-repellent finishing agent, the development of C6 product is gaining its popularity. The effects of PFOA finishing on the silk fabrics were examined, and we reviewed parameters of the needed process for optimizing appearance and functionality of silk fabrics treated with eco-friendly water-repellent finishing agent. Cross-linking agent affected the most on black color of reactive ink, among the physical properties. The contact angle reading was the highest in $8g/{\ell}$ of concentration for all fabrics. All the fabric specimens, subjected to the DTP and water repellent finishing, exhibited higher stiffness, where rayon specimen showed the highest, compared to the untreated specimens. The results may provide basic information leading to the development of value-added silk fabrics with water-repellency without excessive deterioration of the delicate appearance and inherent soft touch.

Characteristics of Proton Exchange Membrane Fuel Cells(PEMFC) Membrane and Electrode Assembly(MEA) Using Sulfonated Poly(ether ether ketone) Membrane (sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of sulfonated Poly(ether ether ketone) (sPEEK) were compared according to degrees of sulfonation (DS), relative humidity, cell temperatures at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. sPEEK membrane showed high performance at high DS, high temperature and high relative humidity, in particular, performance of sPEEK membrane decreased largely due to low ionic conductivity at low DS and low relative humidity.

Toxicological Effects of PFOS and PFOA on Earthworm, Eisenia fetida

  • Joung, Ki-Eun;Jo, Eun-Hye;Kim, Hyun-Mi;Choi, Kyung-Hee;Yoon, Jun-Heon
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.181-186
    • /
    • 2010
  • Perfluorinated Compounds (PFCs) are anthropogenic compounds found in trace amounts in many environmental compartments far from areas of production. Along with the highly persistent nature of PFCs, there are increasing concerns over the potential adverse effects of them on the ecosystems. Most of highly fluorinated compounds degrade into PFOS and PFOA that are very stable compounds hard to break down. So, in this study, we tried to determine the toxicity of PFOS and PFOA in the terrestrial invertebrate. Acute toxicity test using earthworm, Eisenia fetida, was performed according to the OECD test guideline 207 (Earthworm, Acute Toxicity Tests). In the 14 day acute toxicity tests, the highest concentration causing no mortality and the lowest concentration causing 100% mortality of PFOS were 160 and 655 mg/kg (dry weight), respectively. And the highest concentration causing no mortality and the lowest concentration causing 100% mortality were 500 and 1,690 mg/kg (dry weight), respectively in the PFOA-exposure group. 14 day-LC50 values were estimated at the level of 365 and 1,000 mg/kg (dry weight) in the PFOS and PFOA-exposed group. These results indicate that under laboratory conditions PFOS is about 3 times more toxic to earthworms than PFOA. Based on known environmental concentrations of PFOS in the soil of Korea, which occur in the 0.42~0.73 ng/L range, there is no apparent risk to terrestrial invertebrate, earthworms. However, further work is required to investigate long-term effects on these and other terrestrial organisms.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

The Preparation and Physicochemical Properties of Dipalmitoylphosphatidylcholine/Cholesterol/Fluorinated Surfactant Vesicle Incorporated Fatty Acid Salt (불소화지방산염 첨가에 의한 디팔미토일포스파티딜콜린/콜레스테롤/불소화계면활성제 베지클의 제조와 물성 측정 연구)

  • Park, Young Ju;Kwon, Kyung Ok;Kim, Myung Ja
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.457-461
    • /
    • 1998
  • The vesicle system of DPPC(dipalmitoylphosphaticylcholine)/Chol(Cholesterol) has been modified by incorporating various mole fractions of flourinated surfactant($C_8F_{17}(CH_2)_2OCO-CH_2CH(SO_3Na)COO(CH_2)_2C_8F_{17}$. Sodium bis(1H,1H,2H,2H-heptadecaflurododecyl)-2-sulfosuccinate, FS)/fluorinated fatty acid salt ($C_7F_{15}COONH_4$, ammoniumpentadecaflurooctyrate, FFS), and their physicochemical properties have been investigated in an attempt to enhance the stability of phospholipid vesicle system. The ${\zeta}$-potential measurement by use of Zetamaster sub-micron Particle Electrophoresis Analyzer (Malvern Co.) showed that a charged homogeneous DPPC/Chol/FS vesicle has been formed owing to the incorporated FFS effect on the membrane, playing a role as a cosurfactant in the bilayer between DPPC and FS components. With increase in the concentration of FFS, it was found that the particle size and also surface charge of the DPPC/Chol/FS vesicle decreased. The stability of DPPC/Chol/FS/FFS liposome was found to be enhanced significantly compared to that of DPPC/Chol/FS according to the dispersity change as a function of time. The release rate of dye molecule of Methylene Blue from the DPPC/Chol/FS/FFS vesicle was determined to be slower than that of DPPC/Chol/FS system, and it may be attributed to the increase in microviscosity of the hydrophobic region in the bilayer. The affinfinity of DPPC/Chol/FS/FFS vesicles to albumin was found to be slightly lowered compared to that of DPPC/Chol/FS. Based on these findings, it was confirmed that a more stable and homogeneous vesicle system of DPPC/Chol/FS could be prepared by addition of FFS, acting as a cosurfactant in the aggregate formation.

  • PDF