• Title/Summary/Keyword: fluorescence tuning

Search Result 12, Processing Time 0.017 seconds

Enhanced Production of Bacterial Cellulose in Komagataeibacter xylinus Via Tuning of Biosynthesis Genes with Synthetic RBS

  • Hur, Dong Hoon;Choi, Woo Sung;Kim, Tae Yong;Lee, Sang Yup;Park, Jin Hwan;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1430-1435
    • /
    • 2020
  • Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.

Synthesis, Photophysical and Electrochemical Properties of Novel Conjugated Donor-Acceptor Molecules Based on Phenothiazine and Benzimidazole

  • Zhang, Xiao-Hang;Kim, Seon-Ho;Lee, In-Su;Gao, Chun-Ji;Yang, Sung-Ik;Ahn, Kwang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1389-1395
    • /
    • 2007
  • Two series of new organic fluorophores such as asymmetrical 3-(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 1 and symmetrical 3,7-bis(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 2 have been synthesized. Electronic absorption, fluorescence, and electrochemistry measurements reveal that the electron withdrawing benzimidazole subunit directly connected to the phenothiazine core facilitates the charge transfer characters which were also verified by the theoretical calculations. Various substituents on the benzimidazole moieties can allow a fine-tuning of the LUMO energy levels of the molecules without significantly affecting the HOMO energy levels. The method provides a new route for designing ambipolar molecules whose energy levels are well-matched with the Fermi levels of the electrodes to facilitate the electron or hole injection/transfer in OLED devices.