• 제목/요약/키워드: fluid-applied

검색결과 2,880건 처리시간 0.031초

MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성 (Performance of Squeeze Film Damper Using Magneto-Rheological Fluid)

  • 안영공;양보석;신동춘;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

반능동형 MR유체 마운트의 성능제어 (Control Performance for Semi-active Mount Featuring Magneto-Rheological Fluid)

  • 김옥삼;박우철;이현창
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the semi active mount featuring Magneto rheological fluid(MR Fluid) is proposed. MR fluid is suspension of micro sized magnetizable particles in a fluid medium, and its apparent viscosity can be varied by the applied strength of magnetic field. When the controllable MR fluid is applied to mechanical devices, the devices provide simple, rapid response interfaces between electronic controls and mechanical systems. The MR fluid is applied in the conventional fluid mount for improving its performance of the mount's isolation effect. A appropriate size of the MR mount is designed and manufactured on the basis of Bingham model of MR fluid. In addition, the field dependent damping forces of MR mount are evaluated with respect to the input frequency variation.

  • PDF

Audiogram in Response to Stimulation Delivered to Fluid Applied to the External Meatus

  • Geal-Dor, Miriam;Chordekar, Shai;Adelman, Cahtia;Kaufmann-Yehezkely, Michal;Sohmer, Haim
    • Journal of Audiology & Otology
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2020
  • Background and Objectives: Hearing can be elicited in response to vibratory stimuli delivered to fluid in the external auditory meatus. To obtain a complete audiogram in subjects with normal hearing in response to pure tone vibratory stimuli delivered to fluid applied to the external meatus. Subjects and Methods: Pure tone vibratory stimuli in the audiometric range from 0.25 to 6.0 kHz were delivered to fluid applied to the external meatus of eight participants with normal hearing (15 dB or better) using a rod attached to a standard clinical bone vibrator. The fluid thresholds obtained were compared to the air conduction (AC), bone conduction (BC; mastoid), and soft tissue conduction (STC; neck) thresholds in the same subjects. Results: Fluid stimulation thresholds were obtained at every frequency in each subject. The fluid and STC (neck) audiograms sloped down at higher frequencies, while the AC and BC audiograms were flat. It is likely that the fluid stimulation audiograms did not involve AC mechanisms or even, possibly, osseous BC mechanisms. Conclusions: The thresholds elicited in response to the fluid in the meatus likely reflect a form of STC and may result from excitation of the inner ear by the vibrations induced in the fluid. The sloping fluid audiograms may reflect transmission pathways that are less effective at higher frequencies.

Audiogram in Response to Stimulation Delivered to Fluid Applied to the External Meatus

  • Geal-Dor, Miriam;Chordekar, Shai;Adelman, Cahtia;Kaufmann-Yehezkely, Michal;Sohmer, Haim
    • 대한청각학회지
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2020
  • Background and Objectives: Hearing can be elicited in response to vibratory stimuli delivered to fluid in the external auditory meatus. To obtain a complete audiogram in subjects with normal hearing in response to pure tone vibratory stimuli delivered to fluid applied to the external meatus. Subjects and Methods: Pure tone vibratory stimuli in the audiometric range from 0.25 to 6.0 kHz were delivered to fluid applied to the external meatus of eight participants with normal hearing (15 dB or better) using a rod attached to a standard clinical bone vibrator. The fluid thresholds obtained were compared to the air conduction (AC), bone conduction (BC; mastoid), and soft tissue conduction (STC; neck) thresholds in the same subjects. Results: Fluid stimulation thresholds were obtained at every frequency in each subject. The fluid and STC (neck) audiograms sloped down at higher frequencies, while the AC and BC audiograms were flat. It is likely that the fluid stimulation audiograms did not involve AC mechanisms or even, possibly, osseous BC mechanisms. Conclusions: The thresholds elicited in response to the fluid in the meatus likely reflect a form of STC and may result from excitation of the inner ear by the vibrations induced in the fluid. The sloping fluid audiograms may reflect transmission pathways that are less effective at higher frequencies.

재질과 자기장 세기가 자기유변유체의 마찰 특성에 미치는 영향 (A Study on the Effect of the Material and Applied Magnetic Field Strength on the Friction Characteristics of Magnetorheological Fluids)

  • 장붕;이광희;이철희
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.39-45
    • /
    • 2013
  • Magnetorheological (MR) fluid belongs to the group of smart materials. In MR fluid, iron particles in base oil form chains in the direction of the applied magnetic field, thus resulting in a variation in the stiffness and damping characteristics of the fluid. Research is being carried out on controlling the stiffness and damping characteristics as well as the tribological characteristics of the MR fluid. In this study, the friction characteristics of MR fluid have been evaluated using three types of materials and magnetic fields of different strengths. The coefficients of friction of the three types of MR fluid are measured, and the relationship between the coefficient of friction and the strength of the applied magnetic field is obtained.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정 (Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid)

  • 안영공;하종용;김용한;안경관;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 분석 (Investigation of Dynamic Property of Squeeze Film Damper Using Magnetic Fluid)

  • 하종용;김용한;양보석;삼하신;안경관;안영공
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1262-1267
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet Is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness Properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

MR유체를 이용한 엔진마운트의 슬라이딩모드제어 (A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid)

  • 이동길;안영공;정석권;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF