• 제목/요약/키워드: fluid velocity

검색결과 2,503건 처리시간 0.029초

유체의 속도와 압력을 고려한 석유화학 플랜트 배관계의 진동특성에 대한 연구 (A Study on Vibrational Characteristics of Piping Systems in Petrochemical Plants Considering the Fluid Velocity and Pressure)

  • 김경훈;김정훈;최명진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1053-1060
    • /
    • 2006
  • This paper consider an initially deformed state caused by the pressurized fluid flowing through the pipe at a constant velocity. When the initial forte is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases. However, when the initial tension took into account, the natural frequencies are not changed with the change of the flow velocity. As the internal pipe pressure is increased the natural frequencies are also slightly increased. In free vibrational simulation of piping systems in petrochemical plants, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies. In this study, calculate the mass matrix and stiffness matrix of piping system by MATLAB

  • PDF

끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성 (Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

HYDROMAGNETIC FLUCTUATING FLOW OF A COUPLE STRESS FLUID THROUGH A POROUS MEDIUM

  • Zakaria, M.
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.175-191
    • /
    • 2002
  • The equations of a polar fluid of hydromagnetic fluctuating through a porous medium axe cast into matrix form using the state space and Laplace transform techniques the resulting formulation is applied to a variety of problems. The solution to a problem of an electrically conducting polar fluid in the presence of a transverse magnetic field and to a problem for the flow between two parallel fixed plates is obtained. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results for the velocity, angular velocity distribution and the induced magnetic field are given and illustrated graphically for each problems.

Lie group analysis of MHD slip flow past a stretching surface: Effect of suction/injection

  • Waheed Iqbal;Mudassar Jalil;Mohamed A. Khadimallah;Hamdi Ayed;Ikram Ahmad;Rana Muhammad Akram Muntazir;Abir Mouldi;Muzamal Hussain;Javeria Umbreen;Essam Mohammed Banoqitah;Ghulam Murtaza;Bazal Fatima;Muhammad Taj;Zafer Iqbal
    • Advances in concrete construction
    • /
    • 제17권4호
    • /
    • pp.179-185
    • /
    • 2024
  • Effects of MHD slip flow of second grade fluid with heat transfer are studied in the presence of heat source along permeable stretching surface. The governing boundary layer equations are complex and partial in nature. Using Lie group theory the suitable similarity transformation is derived. The system of PDEs is transformed to system of ODEs by applying these similarity transformations. The combined effect of Hartman number and porosity on velocity profile and the influence of slip parameter on fluid velocity is observed. It is found that enhancing the second grade parameter, boundary layer thickens and ultimately speedup the fluid. Also, the effect of suction/injection parameter on velocity profile is checked. An excellent agreement is noticed that assures the correctness of results. Effects of various physical parameters on the velocity and temperature profile are elaborated with graphs.

Industrial Applications of PIV/PTV Velocity Field Measurement Techniques

  • Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.23-35
    • /
    • 2001
  • Due to advances in digital image processing, computer and optical hardware, it is possible to extract full flow information from visualized flow images. Recently, the PIV/PTV methods have been accepted as a reliable velocity field measurement technique. In my laboratory, several velocity field measurement techniques have been developed and they were applied to various thermo-fluid flow problems. In this paper, some of the industrial applications will be discussed. As a result, the PIV/PTV technique was proved to be a powerful tool for industrial fluid flow diagnosis.

  • PDF

SOLUTION OF THE BOUNDARY LAYER EQUATION FOR A MAGNETOHYDRODYNAMIC FLOW OF A PERFECTLY CONDUCTING FLUID

  • ZAKARIA, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.63-73
    • /
    • 2002
  • The influence of unsteady boundary layer magnetohydrodynamic flow with thermal relaxation of perfectly conducting fluid, past a semi-infinite plate, is considered. The governing non linear partial differential equations are solved using the method of successive approximations. This method is used to obtain the solution for the unsteady boundary layer magnetohydrodynamic flow in the special form when the free stream velocity exponentially depends on time. The effects of Alfven velocity $\alpha$ on the velocity is discussed, and illustrated graphically for the problem.

  • PDF

알루미늄 스크랩의 재활용을 위한 전자기장 펌프의 열 유동 해석에 의한 장비 설계 (The Equipment Design by the Fluid and Thermal Analysis of the Electromagnetic Pump for Recycling of Aluminum Scrap)

  • 최우식;강충길
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.64-71
    • /
    • 2006
  • In this study, to design aluminum scrap recycling equipment, fluid flow and thermal analysis considering electromagnetic phenomenon were carried out by using ANSYS program. The magnetic flux generated by electromagnetic pump has influence on fluid velocity of Al liquid metal with molten metal motion and thermal generation. To investigate the effect of the number of phase on fluid flow and thermal generation, electromagnetic force and magnetic flux were obtained by computer simulation. In addition, the results obtained by fluid flow and thermal analysis, recycling equipment of aluminum scrap with the cooling technology of electromagnetic coil, the most suitable phase and current were proposed.

축방향으로 이송되는 유체유동 단순지지 파이프의 안정성 해석 (Stability Analysis of Axially Moving Simply Supported Pipe Conveying Fluid)

  • 손인수;허관도;이상필;조정래
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.407-412
    • /
    • 2012
  • The dynamic instability and natural frequency of an axially moving pipe conveying fluid are investigated. Thus, the effects of fluid velocity and moving speed on the stability of the system are studied. The governing equation of motion of the moving pipe conveying fluid is derived from the extended Hamilton's principle. The eigenvalues are investigated for the pipe system via the Galerkin method under the simple support boundary. Numerical examples show the effects of the fluid velocity and moving speed on the stability of system. Moreover, the lowest critical moving speeds for the simply supported ends have been presented.

티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구 (A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam)

  • 손인수;안성진;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

Algorithm for solving fluid-structure interaction problem on a global moving mesh

  • Sy, Soyibou;Murea, Cornel Marius
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.99-113
    • /
    • 2012
  • We present a monolithic semi-implicit algorithm for solving fluid-structure interaction problem at small structural displacements. The algorithm uses one global mesh for the fluid-structure domain obtained by gluing the fluid and structure meshes which are matching on the interface. The continuity of velocity at the interface is automatically satisfied and the continuity of stress does not appear explicitly in the global weak form due to the action and reaction principle. At each time step, we have to solve a monolithic system of unknowns velocity and pressure defined on the global fluid-structure domain. Numerical results are presented.