• Title/Summary/Keyword: fluid system

Search Result 5,199, Processing Time 0.042 seconds

Position Control of Capsule Filled with Magnetic Fluid for Targeted Drug Delivery System (지적투약시스템을 위한 자성유체 캡슐의 위치 제어)

  • Ahn Chang-ho;Nam Yun-Joo;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1166-1173
    • /
    • 2004
  • In this paper, in order to apply magnetic fluid with superparamagnetic property as the substitute of ferromagnetic materials, physical properties of magnetic fluid are investigated. A targeted drug delivery system using a capsule filled magnetic fluid is proposed where a magnetic fluid capsule and cylinders are considered as a drug and vital organs, respectively. The dynamic governing equation of this system first is derived. Fluid viscosity, clearance between a cylinder and a magnetic fluid capsule, and levitation height with respect to different cylinder height are considered as major parameters to evaluate dynamic characteristics of the system. The experiments and simulations for the position control of the magnetic fluid capsule in various cylinders are conducted using PID controller. The results show that magnetic fluid with the superparamagnetic property can be applied to a targeted drug delivery system.

Performance of Squeeze Film Damper Using Magneto-Rheological Fluid (MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성)

  • 안영공;양보석;신동춘;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core (비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구)

  • Kim, K. B.;Cho, M. W.;Ha, S. J.;Cho, Y. K.;Song, K. H.;Yang, J. K.;Cai, Y.;Lee, J. W.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

Fluid Sensor and Algorithm for Trouble Detection of Solar Thermal System (태양열 시스템 고장진단을 위한 유체센서와 알고리즘)

  • Lee, Won-Chul;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.351-356
    • /
    • 2014
  • Typical trouble patterns in solar thermal systems include working fluid leakage and freezing other than breakdown of pump. A fluid sensor for measuring electric resistance of fluid was developed and installed at the top of the collector piping in order to check the fault of solar system. Working fluid level in the pipe was determined by measuring electric resistance from a fluid sensor. On the base of this, it was confirmed that the fluid sensor diagnoses leakage of fluid. Electric resistance of propylene glycol aqueous solution was measured in the range of $0{\sim}70^{\circ}C$ and 0~40% of concentration. The response surface analysis was performed by using a central composite design, and the regression equation was derived from the relationship between electric resistance, temperature, and concentration. Through the experiment in a real solar system, we can estimate a concentration of working fluid when a pump is not operating and predict a possibility of freezing. Finally, an effective algorithm for trouble shooting was proposed to operate and maintain the solar system.

Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development (이색 사출성형기 개발을 위한 유압시스템의 특성 검토)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.