• 제목/요약/키워드: fluid property

검색결과 335건 처리시간 0.027초

해교법에 의한 수상자성유체의 제조 및 특성에 관한 연구 (Preparation and Property of Water Based Manetic Fluid by Peptization Method)

  • 오재현;김민석;김만;김성완
    • 한국자기학회지
    • /
    • 제3권3호
    • /
    • pp.234-240
    • /
    • 1993
  • 본 연구에서는 습식법에 의해서 초미립 마그네타이트를 합성하였으며, 이를 자성유체의 분산질로 하는 수상자성 유체를 제조하였다. 이때 합성마그네타이트의 입자표면에는 dodecanoic acid 이온의 흡착층을 형성시켜 수용액중에 안정하게 분산시켰다. 또한 합성된 마그네타이트의 기초적 물 성과 수상자성유체 제조시 계면활성제의 첨가량 및 pH의 변화등이 자성유체의 분산측성, 자기적 특성 및 콜로이드적 안정성에 미치는 영향을 조사하였다.

  • PDF

강한 압력 교란에 구속된 고압 액적의 천이 기화 (Droplet Vaporization in High Pressure Environments with Pressure Oscillations)

  • 김성엽;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

Estimation of Permeability of Green Sand Mould by Performing Sensitivity Analysis on Neural Networks Model

  • Reddy, N. Subba;Baek, Yong-Hyun;Kim, Seong-Gyeong;Hur, Bo Young
    • 한국주조공학회지
    • /
    • 제34권3호
    • /
    • pp.107-111
    • /
    • 2014
  • Permeability is the ability of a material to transmit fluid/gases. It is an important material property and it depends on mould parameters such as grain fineness number, clay, moisture, mulling time, and hardness. Modeling the relationships among these variable and interactions by mathematical models is complex. Hence a biologically inspired artificial neural-network technique with a back-propagation-learning algorithm was developed to estimate the permeability of green sand. The developed model was used to perform a sensitivity analysis to estimate permeability. The individual as well as the combined influence of mould parameters on permeability were simulated. The model was able to describe the complex relationships in the system. The optimum process window for maximum permeability was obtained as 8.75-10.5% clay and 3.9-9.5% moisture. The developed model is very useful in understanding various interactions between inputs and their effects on permeability.

공압 제진 시스템의 해석과 설계: I. 모델링과 전달율 계산 알고리즘 (Analysis and Design of a Pneumatic Vibration Isolation System: Part I. Modeling and Algorithm for Transmissibility Calculation)

  • 문준희;박희재
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.127-136
    • /
    • 2004
  • This paper is the first of two companion papers concerning the analysis and design of a pneumatic vibration isolation system. The design optimization of the pneumatic vibration isolation system is required for the reduction of cost, endeavor and time, and it needs modeling and calculation algorithm. The nonlinear models are devised from the fluid mechanical expression for components of the system and the calculation algorithm is derived from the mathematical relationship between the models. It is shown that the orifice makes the nonlinear property of the transmissibility curve that the resonant frequency changes by the amplitude of excited vibration. Linearization of the nonlinear models is tried to reduce elapsed time and truncation error accumulation and to enable the transmissibility calculation of the system with multi damping chambers. The equivalent mechanical models generated by linearization clarify the function of each component of the system and lead to the linearized transfer function that can give forth to the transmissibility exactly close to that of nonlinear models. The modified successive under-relaxation method is developed to calculate the linearized transfer function.

3전극형 전자종이 디스플레이에서 하부전극 간격이 패널의 광특성에 미치는 영향 (Effect of Electrode Space on Optical Property in Three-Electrode Type E-paper Display)

  • 이상일;홍연찬;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.231-236
    • /
    • 2016
  • A three-electrode type reflective display (electronic paper) is designed to apply an independent electric field to each three electrodes of the cell including two electric-type of particles and electrically neutral color fluid, so single color realization is possible. In particular, the movement of particles and optical properties are decided by the electric field between two electrodes on the lower substrate. So, the effect of electric field by the distance between two electrodes on the lower substrate is studied with electrode spacing with $10{\mu}m$, $15{\mu}m$, $20{\mu}m$, and $25{\mu}m$. By our experimentation, the driving voltage induces more reliable movement of charged particles and the optical properties as compared with the threshold voltage. We ascertain the single color realization and non-inverted particle separation is possible. So the more desirable optical properties are observed in case of the short electrode like $10{\mu}m$.

Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications

  • Yoon Seong-Sik;Kang Sungchul;Yun Seung-kook;Kim Seung-Jong;Kim Young-Hwan;Kim Munsang
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1835-1845
    • /
    • 2005
  • In this paper a safe arm with passive compliant joints and visco-elastic covering is designed for human-friendly service robots. The passive compliant joint (PCJ) is composed of a magneto-rheological (MR) damper and a rotary spring. In addition to a spring component, a damper is introduced for damping effect and works as a rotary viscous damper by controlling the electric current according to the angular velocity of spring displacement. When a manipulator interacts with human or environment, the joints and cover passively operate and attenuate the applied collision force. The force attenuation property is verified through collision experiments showing that the proposed passive arm is safe in view of some evaluation measures.

해수 열교환기용 재료의 부식특성에 관한 전기 화학적 연구 (An Electrochemical Study on the Corrosion Property of Materials for Sea Water Heat Exchange System)

  • 김진경;김강희;김성종;박근현;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.99-107
    • /
    • 2002
  • Recently all kinds of structural materials are subjected to the severe corrosive environment. Especially corrosion problems of heat exchanger such as galvanic corrosion, erosion and cavitation raised by both contaminated solution and high velocity of fluid to increase cooling effect of heat exchanger have been frequently reported in these days. In this study two kinds of sheet materials and five kinds of tube materials are used for galvanic corrosion characteristics and their corrosion current density calculation. The tube materials having the most galvanic corrosion resistance between tube and sheet of heat exchanger were Al Brass(68700) and Al Brass(C6872TS) and although Ti tube predominantly indicated the highest individual corrosion resistance among those five tube materials. it appeared that Ti tube can be allowed as sheet materials to get galvanic corrosion easily. However it is considered that Cu-Ni tube materials is not only easy to produce galvanic corrosion significantly between tube and sheet regardless of kinds of sheet materials but also is appeared considerably its own high corrosion current density

미분변환법을 이용한 회전외팔보의 자유진동해석 (Free Vibration Analysis of a Rotating Cantilever Beam by Using Differential Transformation Method)

  • 신영재;지영철;윤종학;유영찬
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.331-337
    • /
    • 2007
  • Rotating cantilever beams can be found in several practical engineering applications such as turbine blades and helicopter rotor blades. For reliable and economic design, it is necessary to estimate the dynamic characteristics of those structures accurately and efficiently since significant variation of dynamic characteristics resulted from rotational motion of the structures. Recently, Differential Transformation Method(DTM) was proposed by Zhou. This method has been applied to fluid dynamics and vibration problems, and has shown accuracy, efficiency and convenience in solving differential equations. The purpose of this study, the free vibration analysis of a rotating cantilever beam, is to seek for the reliable property of DTM and confidence in the results obtained by this method by comparing the results with that of finite element method applied to linear partial differential equations. In particular, this study is worked by supposing optional T-function values because the equations governing chordwise motion are based on two differential equations coupled with each other. This study also shows mode shapes of rotating cantilever beams for various rotating speeds.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구 (A Study on Droplet Formation from Piezo Inkjet Print Head)

  • 오세영;이정용;이유섭;정재우;위상권
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.