• Title/Summary/Keyword: fluid penetration

Search Result 111, Processing Time 0.028 seconds

Improvement of Fluid Penetration Efficiency in Soil Using Plasma Blasting (플라즈마 발파를 이용한 토양 내 유체의 침투 효율 개선)

  • Baek, In-Joon;Jang, Hyun-Shic;Song, Jae-Yong;Lee, Geun-Chun;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.433-445
    • /
    • 2021
  • Plasma blasting by high voltage arc discharge were performed in laboratory-scale soil samples to investigate the fluid penetration efficiency. A plasma blasting device with a large-capacity capacitor and columnar soil samples with a diameter of 80 cm and a height of 60 cm were prepared. Columnar soil samples consist of seven A-samples mixed with sand and silt by ratio of 7:3 and three B-samples by ratio of 9:1. When fluid was injected into A-sample by pressure without plasma blasting, fluid penetrated into soil only near around the borehole, and penetration area ratio was less than 5%. Fluid was injected by plasma blasting with three different discharge energies of 1 kJ, 4 kJ and 9 kJ. When plasma blasting was performed once in the A-samples, penetration area ratios of the fluid were 16-25%. Penetration area ratios were 30-48% when blastings were executed five times consecutively. The largest penetration area by plasma blasting was 9.6 times larger than that by fluid injection by pressure. This indicates that the higher discharge energy of plasma blasting and the more numbers of blasting are, the larger are fluid penetration areas. When five consecutive plasma blasting were carried out in B-sample, fluid penetration area ratios were 33-59%. Penetration areas into B-samples were 1.1-1.4 times larger than those in A-samples when test conditions were the same, indicating that the higher permeability of soil is, the larger is fluid penetration area. The fluid penetration radius was calculated to figure out fluid penetration volume. When the fluid was injected by pressure, the penetration radius was 9 cm. Whereas, the penetration radius was 27-30 cm when blasting were performed 5 times with energy of 9 kJ. The radius increased up to 333% by plasma blasting. All these results indicate that cleaning agent penetrates further and remediation efficiency of contaminated soil will be improved if plasma blasting technology is applied to in situ cleaning of contaminated soil with low permeability.

Determination of Penetration Depth of Nb Electrodes in $Nb/A1O_x/Nb$ Josephson Junction by Resistive Method ($Nb/A1O_x/Nb$ 조셉슨 접합에서 저항측정을 이용한 Nb 전극의 침투깊이 측정)

  • 김동호;김규태;박종원;황준석;홍현권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • Penetration depth of Nb electrodes in $Nb/A1O_x/Nb$ Josephson junctions has been measured by resistive method. For a given applied field, the total flux through the junction is temperature dependent because the penetration depth of Nb electrode varies with temperature. If the total flux equals an integral multiple of the flux quantum at certain temperatures, resistive peaks appear at those temperatures. The penetration depth of Nb can be determined by applying the above condition, The temperature dependence of penetration depth was found to be well described by the two-fluid model.

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

Addition of Oviductal Fluid to the Fertilization Medium Enhances Monospermic Penetration and Subsequent In Vitro Development of Porcine Oocytes (체외수정시 배양액내 난관액 첨가가 돼지 난포란의 수정율 및 배 발달율에 미치는 영향)

  • 김남형;문승주;임준교;구덕본;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • The objective of this study was to determine effects of oviductal fluid on the sperm penetration and subsequent in vitro development of porcine oocytes. The addition of oviductal fluid to the fertilization medium decreased sperm pen etration and the mean number of spermatozoa in penetrated eggs. The number of spermatozoa firmly bound to zona pellucida was also decreased in the presence of oviductal fluid. Chlortetracy cline (CTC) fluorescence patterns were used to determine incidence of capacitation and acrosome reaction. The proportion of capacitated a and acrosome free spermatozoa increased when spermatozoa were exposed for 1.5 and 3 h to oviductal fluid. These results suggest that the factor(s) in secretion from the oviduct reduces polyspermic fertilization and the number of spermatozoa that will penetrate porcine oocytes. The reduction of polyspermic penetration by oviductal secretions may be due to a reduced number of spermatozoa in the fertilization me-dium into an intact acrosome.

  • PDF

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.