• Title/Summary/Keyword: fluid moduli

Search Result 17, Processing Time 0.032 seconds

Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation (전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰)

  • Choi, Seung-Bok;Park, Yong-Kun;Suh, Moon-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Mechanistic Pressure Jump Terms based on the System Eigenvalues of Two-Fluid Model for Bubbly Flow (2-유체 모델의 고유치에 근거한 기포류에서의 계면압력도약항)

  • Chung, M.S.;Lee, W.J.;Lee, S.J.;Song, C.H.;Ha, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.81-86
    • /
    • 2001
  • Interfacial pressure jump terms based on the physics of phasic interface and bubble dynamics are introduced into the momentum equations of the two-fluid model for bubbly flow. The pressure discontinuity across the phasic interface due to the surface tension force is expressed as the function of fluid bulk moduli and bubble radius. The consequence is that we obtain from the system of equations the real eigenvalues representing the void-fraction propagation speed and the pressure wave speed in terms of the bubble diameter. Inversely, we obtain an analytic closure relation for the radius of bubbles in the bubbly flow by using the kinematic wave speed given empirically in the literature. It is remarkable to see that the present mechanistic model using this practical bubble radius can indeed represent both the mathematical well-posedness and the physical wave speeds in the bubbly flow.

  • PDF

Intra-luminal Thrombus Reduces Stress in the Aneurysm Wall: Fluid-Structure Interaction in Pulsatile Flow

  • Kim S. Y.;Kim Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.147-149
    • /
    • 2003
  • Using computational fluid dynamics with the fluid-structure interaction, structural effects of intra-luminal thrombus were determined in thrombosed axisymmetric abdominal aorta aneurysm (AAA) models under pulsatile flow. Four different models, varying dilatations of the aneurysm and Young's moduli of intra-luminal thrombus, were defmed. Compared with unthrombosed AAA models, both von Mises stress and radial displacements in the aneurysm wall significantly decreased. Stiffer intra-luminal thrombus reduced von Mises stress in the aneUtysm wall. The present study supported that intra-luminal thrombus might reduce wall stress in the aneurysm.

  • PDF

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Rock Physics Modeling: Report and a Case Study (암석 물리 모델링: 기술 보고 및 적용 사례)

  • Lee, Gwang H.
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.225-242
    • /
    • 2016
  • Rock physics serves as a useful tool for seismic reservoir characterization and monitoring by providing quantitative relationships between rock properties and seismic data. Rock physics models can predict effective moduli for reservoirs with different mineral components and pore fluids from well-log data. The distribution of reservoirs and fluids for the entire seismic volume can also be estimated from rock physics models. The first part of this report discusses the Voigt, Reuss, and Hashin-Shtrikman bounds for effective elastic moduli and the Gassmann fluid substitution. The second part reviews various contact models for moderate- to high-porosity sands. In the third part, constant-cement model, known to work well for the sand that gradually loses porosity with deteriorating sorting, was applied to the well-log data from an oil field in the North Sea. Lastly, the rock physics template constructed from the constant-cement model and the results from the prestack inversion of 2D seismic data were combined to predict the lithology and fluid types for the sand reservoir of this oil field.

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Topological Analysis on the Modulus and Network Structure of Miscible Polymer Blends

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear moduli, and it may establish more correctly the topological relations among these physical quantities. Through such introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically predictive values are compared and show good agreement with the experimental data for several miscible polymer blends.

Elastic Modulus of Magnetic Fluids Evaluated by Ultrasonic Test (초음파 시험에 의한 자기유체의 탄성율 산정)

  • Kim, Jong-Hee;Kim, Kun-Woo;Kim, Cheol-Gi;Lee, Seung-Goo;Koo, Man-Hoi
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.136-139
    • /
    • 2012
  • Magnetic nanoparticles for ferromagnetic fluids and magnetorheological fluids were prepared by chemical coprecipitation and mechanical milling, respectively. The surface-treated particles were dispersed at various weight ratios into a medium of polyethylene glycol. In order to evaluate the elastic modulus of the fluids, ultrasonic pulse velocities were measured with an ultrasonic test using transducers of 5MHz and 2.25MHz. The ultrasonic signals were only available with a transducer of 2.25 MHz at fluid concentrations of 5 mg/ml and lower. In the case of applying transducers over 2.25 MHz and concentrations over 5 mg/ml to the fluids, it was impossible to observe effective ultrasonic signals due to an excessive scattering of the pulses by the dispersed particles. Elastic moduli of the magnetorheological fluids were 5.44 GPa and 6.13 GPa with concentrations of 25 mg/ml and 50 mg/ml, respectively; these values were higher by 40% than the values of 4.04 GPa and 4.28 GPa of ferromagnetic fluids at the same concentrations. As for the effect of an external magnetic field on these dilute fluids, the ultrasonic signals were positioned in a very similar way, which was probably due to insufficient arrangement of the particles even though the reflection energy of the ultrasonic waves apparently increased.

Strain Rate Dependent Poroelastic Behavior of Bovine Vertebral Trabecular Bone

  • Hong, Jung-Hwa;Mum, Mu-Seong;Lim, Tae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1032-1040
    • /
    • 2001
  • It is widely accepted that the pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid on porous bony structure, a consideration for the biomechanical interactions between fluid and solid constituents within bone is required. In this study, a poroelastic theory was applied to investigate the elastic behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow. The poroelastic behavior of trabecular bone in a uniaxial stress condition was simulated using a commercial finite difference analysis software (FLAC, Itasca Consulting Group, USA), and tested for 5 different strain rates, i.e., 0.001, 0.01, 0.1, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic responses, the drained and undrained deformations, were predicted. From the predicted results for the simulated five strain rates, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, otherwise it showed a nonlinear behavior. The pore pressure generation with respect to the strain was found to be increased as the strain rate increased. The elastic moduli predicted at each strain were 208.3, 212.2, 337.6, 593.1, and 602.2 MPa, respectively. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a poroelastic material and its strain rate dependent material behavior could be predicted.

  • PDF