• 제목/요약/키워드: fluid modeling

검색결과 919건 처리시간 0.02초

수중로봇팔의 동역학 모델링과 동적 조작도 해석 (Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms)

  • 전봉환;이지홍;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

전기장에 따른 복합재 ER Beam의 진동제어 특성 (Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence)

  • 김재환;강영규;최승복
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

유체가 흐르는 튜브 라인의 기하학적 형상에 따른 진동해석 (Vibration Analysis on the Variable Configurations of Tube Conveying Fluid)

  • 유계형;김영권;신귀수;박태원
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.25-30
    • /
    • 2001
  • This paper studies the effect of vibration characteristics of tube line conveying fluid with the power steering system of bus. We modelled fluid-filled tube line using I-DEAS software to investigate vibration characteristics of the power steering tube line. And we obtained the natural frequency of tube line through finite element analysis. Analytic solutions were compared with experimental solutions to verify finite element model. We tested the tube line to examine an effect of pressure pulse by vane pump and variation of geometry of tube. From both the experimental results and the modeling results for vibration characteristics of the tube line conveying fluid, we confirmed that vibration characteristics induced by pulse propagated along the power steering tube line and resonance occurred around the natural frequency with pulse excitation.

  • PDF

오리피스형 분사노즐에서 작동유체의 온도변화에 따른 K-factor에 관한 연구 (Study on K-factor for temperature variation of working fluid in spray nozzle with orifice)

  • 배강열;정희택;김찬희;김형범
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.12-18
    • /
    • 2008
  • In the present study, the numerical simulation has been performed to investigate K-factor for temperature variation of working fluid in spray nozzle with orifice. The commercial CFD software, Fluent with the proper modeling was applied for analyzing the internal of the spray nozzle. Numerical result for K-factor at $20^{\circ}C$ agrees with the experimental result that it applied n=0.5 within about 7% error. The pressure drop inside nozzle is showed 20% passing swirler, 70% in the region between the outlet of swirler and the orifice and 10% at the outlet of orifice. As the operating pressure is increased, K-factor is decreased by effect of flow resistance at it's inlet before pass swirler. The temperature increase of working fluid reduced the flow rate according to reducing of density, and average 1.23% decrease is showed in the present research.

  • PDF

Modeling and identification of a class of MR fluid foam dampers

  • Zapateiro, Mauricio;Luo, Ningsu;Taylor, Ellen;Dyke, Shirley J.
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.101-113
    • /
    • 2010
  • This paper presents the results of a series of experiments conducted to model a magnetorheological damper operated in shear mode. The prototype MR damper consists of two parallel steel plates; a paddle covered with an MR fluid coated foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid is reached by the magnetic field of the coil in one end of the device. Two approaches were considered in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent models and a non parametric approach based on a Neural Network model. The accuracy to reproduce the MR damper behavior is compared as well as some aspects related to performance are discussed.