• Title/Summary/Keyword: fluid film lubrication

Search Result 94, Processing Time 0.021 seconds

Static Characteristics of Micro Gas-Lubricated proceeding Bearings with a Slip Flow (미끄럼 유동을 고려한 초소형 공기 베어링의 정특성)

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.137-142
    • /
    • 2002
  • The fluid mechanics and operating conditions of gas-lubricated proceeding bearings in micro rotating machinery such as micro polarization modulator and micro gas turbine are different from their larger size ones. Due to non-continuum effects, there is a slip of gas at the walls. Thus in this paper, the slip flow effect is considered to estimate the pressure distribution and load-carrying capacity of micro gas-lubricated proceeding bearings as the local Knudsen number at the minimum film thickness is greater than 0.01. Based on the compressible Reynolds equation with slip flow, the static characteristics of micro gas-lubricated proceeding bearings are obtained. Numerical predictions compare the pressure distribution and load capacity considering slip flow with the performance of micro proceeding bearings without slip f]ow for a range of bearing numbers and eccentricities. The results clearly show that the slip flow effect on the static characteristics is considerable and becomes more significant as temperature increases.

  • PDF

Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector (고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구)

  • Ryu, Daewon;Kim, Dongjun;Park, Sang-Shin;Ryu, Bongwoo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.