• Title/Summary/Keyword: fluctuating fields

Search Result 33, Processing Time 0.018 seconds

Scheme and application of phase delay spectrum towards spatial stochastic wind fields

  • Yan, Qi;Peng, Yongbo;Li, Jie
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.433-455
    • /
    • 2013
  • A phase delay spectrum model towards the representation of spatial coherence of stochastic wind fields is proposed. Different from the classical coherence functions used in the spectral representation methods, the model is derived from the comprehensive description of coherence of fluctuating wind speeds and from the thorough analysis of physical accounts of random factors affecting phase delay, building up a consistent mapping between the simulated fluctuating wind speeds and the basic random variables. It thus includes complete probabilistic information of spatial stochastic wind fields. This treatment prompts a ready and succinct scheme for the simulation of fluctuating wind speeds, and provides a new perspective to the accurate assessment of dynamic reliability of wind-induced structures. Numerical investigations and comparative studies indicate that the developed model is of rationality and of applicability which matches well with the measured data at spatial points of wind fields, whereby the phase spectra at defined datum mark and objective point are feasibly obtained using the numerical scheme associated with the starting-time of phase evolution. In conjunction with the stochastic Fourier amplitude spectrum that we developed previously, the time history of fluctuating wind speeds at any spatial points of wind fields can be readily simulated.

Mathematical explanation on the POD applications for wind pressure fields with or without mean value components

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin;Chen, Huai
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.367-383
    • /
    • 2016
  • The influence mechanism of mean value components, noted as $P_0$, on POD applications for complete random fields $P_C(t)$ and fluctuating random fields $P_F(t)$ are illustrated mathematically. The critical philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of $P_0$, which connect the correlation function matrix of $P_C(t)$ and $P_F(t)$, and their POD results. Then, POD analyses for several different wind pressure fields were presented comparatively as validation. It's inevitable mathematically that the first eigenmode of $P_C(t)$ resembles the distribution of $P_0$ and the first eigenvalue of $P_C(t)$ is close to the energy of $P_0$, due to similarity of the correlation function matrixs of $P_C(t)$ and $P_0$. However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and the following modes represent the fluctuating pressure when $P_C(t)$ are employed in POD application. When $P_C(t)$ are employed, POD results of all modes would be distorted by the mean value components, and it's impossible to identify $P_0$ and $P_F(t)$ separately. Consequently, characteristics of the fluctuating component, which is always the primary concern in wind pressure field analysis, can only be precisely identified with $P_0$ excluded in POD.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder (실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

Aspects of the use of proper orthogonal decomposition of surface pressure fields

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.97-115
    • /
    • 2000
  • The technique of proper orthogonal decomposition is potentially useful in specifying the fluctuating surface pressure field around structures. However there has been a degree of controversy over whether or not the calculated modes have physical meanings. This paper addresses this issue through consideration of the results of full scale experiments, and through an analytical investigation. It is concluded that the lower, most energetic modes are likely to reflect different fluctuating flow mechanisms, although no mode is likely to be associated with just one flow mechanism or vice versa. The higher, less energetic modes are likely to represent interactions between different flow mechanisms, and to be significantly affected by the number of measurement points and measurement errors. The paper concludes with a brief description of the application of POD to the problem of building ventilation, and the calculation of cladding pressures.

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.

The evolution of Magnetic fields in IntraClusterMedium

  • Park, Kiwan;Ryu, Dongsu;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • IntraCluster Medium (ICM) located at the galaxy cluster is in the state of very hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. High temperature and low density make ICM very viscous and conductive. In addition to the high conductivity, fluctuating random plasma motions in ICM, occurring at all evolution stages, generate and amplify the magnetic fields in such viscous ionized gas. The amplified magnetic fields in reverse drive and constrain the plasma motions beyond the viscous scale through the magnetic tension. Moreover, without the influence of resistivity viscous damping effect gets balanced only with the magnetic tension in the extended viscous scale leading to peculiar ICM energy spectra. This overall collisionless magnetohydrodynamic (MHD) turbulence in ICM was simulated using a hyper diffusivity method. The results show the plasma motions and frozen magnetic fields have power law of $E_V^k{\sim}k^{-3}$, $E_M^k{\sim}k^{-1}$. To explain these abnormal power spectra we set up two simultaneous differential equations for the kinetic and magnetic energy using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The solutions and dimensions of leading terms in the coupled equations derive the power spectra and tell us how the spectra are formed. We also derived the same results with a more intuitive balance relation and stationary energy transport rate.

  • PDF

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.