• Title/Summary/Keyword: flowing amount

Search Result 210, Processing Time 0.022 seconds

Control System of Traffic Signal by Image Processing at Night (영상처리를 이용한 야간 교통신호 제어시스템)

  • Shin, Ji-Hwan;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.697-702
    • /
    • 2018
  • Recently, the number of private cars has increased sharply due to the increase in national income. The sudden increase in the number of vehicles in limited territory has caused serious traffic congestion and the traffic congestion cost wasted on the road due to such traffic congestion is increasing every year. To solve this problem, we propose a traffic signal control system using image processing. In this paper, we use the camera installed at the intersection to measure the amount of traffic flowing in and out of each road simultaneously. We propose a traffic signal control system that can prevent traffic congestion before it happens. In the case of applying the traffic signal control system proposed in this paper to the daytime, the traffic volume could be measured accurately. However, the result of the experiment with the night-time general camera and the headlight with the infrared camera at the night-time of 72.8% was 86.6%.

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

What Can Radiation Protection Experts Contribute to the Issue of the Treated Water Stored in the Damaged Fukushima Daiichi Nuclear Power Plant?

  • Yamaguchi, Ichiro
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • Decommissioning efforts are underway at the reactor where the accident occurred, namely the damaged Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant (FDNPP). However, a large amount of groundwater flowing into the site has become contaminated with radioactive substances and is stored in tanks on site, which has hampered the decommissioning work. Although the inflow of groundwater has been greatly reduced through measures such as the construction of frost walls, approximately 170 ㎥ of water treated by the Advanced Liquid Processing System (ALPS) is being stored in tanks, each day. The tanks used to store this treated water are expected to become full by around the summer of 2022. It is not easy to get people to understand the efforts of all concerned parties, and providing clear information to these concerned parties is also a challenge. Questions have also been raised regarding whether other alternatives have been fully explored in the ALPS subcommittee. Some people have commented that the answers to the questions raised regarding the biological effects of tritium transmutation are inadequate. Some suspect that the answers are too detailed and incomprehensible, and that the respondents may be manipulating the public with some malicious intent. In any case, each possible plan presents both advantages and disadvantages, depending on the people who are involved. That makes it an ethical and vexing issue that can sway decisions, as perspectives change. While the environmental release plan is scientifically safe, it may represent a painful alternative. On the other hand, a more careful and imaginative approach to the idea of continued storage in tanks or other forms of storage may reveal some troublesome hidden disadvantages. Under these circumstances, experts must be prepared to answer people's questions in a comprehensive and robust manner.

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

Predicting flux of forward osmosis membrane module using deep learning (딥러닝을 이용한 정삼투 막모듈의 플럭스 예측)

  • Kim, Jaeyoon;Jeon, Jongmin;Kim, Noori;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2021
  • Forward osmosis (FO) process is a chemical potential driven process, where highly concentrated draw solution (DS) is used to take water through semi-permeable membrane from feed solution (FS) with lower concentration. Recently, commercial FO membrane modules have been developed so that full-scale FO process can be applied to seawater desalination or water reuse. In order to design a real-scale FO plant, the performance prediction of FO membrane modules installed in the plant is essential. Especially, the flux prediction is the most important task because the amount of diluted draw solution and concentrate solution flowing out of FO modules can be expected from the flux. Through a previous study, a theoretical based FO module model to predict flux was developed. However it needs an intensive numerical calculation work and a fitting process to reflect a complex module geometry. The idea of this work is to introduce deep learning to predict flux of FO membrane modules using 116 experimental data set, which include six input variables (flow rate, pressure, and ion concentration of DS and FS) and one output variable (flux). The procedure of optimizing a deep learning model to minimize prediction error and overfitting problem was developed and tested. The optimized deep learning model (error of 3.87%) was found to predict flux better than the theoretical based FO module model (error of 10.13%) in the data set which were not used in machine learning.

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.

Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC) (저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과)

  • Lee, Mi-Hwa;Yang, Seol-Hwa;Kim, Young-Sook;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.486-491
    • /
    • 2022
  • A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.

An experimental study on the correlation of hydraulic mean radius and hydrodispersive parameters in rockfill porous media (자갈 다공성매질에서 수리평균반경과 수리분산 매개변수의 상관성에 관한 실험적 연구)

  • Han, Ilyeong;Lee, Jaejoung;Kim, Gyoo Bum
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.863-873
    • /
    • 2021
  • The mechanical dispersion which dominates solute transport in porous media is caused by the difference in flow velocity within pores. Longitudinal dispersion coefficient and longitudinal dispersivity that are hydro-dispersive parameters of advection-dispersion equation can only be obtained by experiment. Hydraulic mean radius that represents the amount and intensity of flowing water within pores can be obtained by the formula using the factors for physical properties. A slug injection test was conducted and a power type empirical formula for obtaining a longitudinal dispersivity using a hydraulic mean radius in rockfill porous media was derived. It is possible to obtain the longitudinal dispersivity depending on transport distance because it contains a formula for a scale constant, and expected to be applicable to waterways filled with homogeneous gravel and small flow rate.

Estimating the Relative Contribution of Organic Phosphorus to Organic Matters with Various Sources Flowing into a Reservoir Via Fluorescence Spectroscopy (형광스펙트럼을 이용한 유역 하류 저수지의 유입 유기물 내 유기인 기여도 평가)

  • Mi-Hee Lee;Seungyoon Lee;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • The introduction of a significant amount of phosphorous into aquatic environments can lead to eutrophication, which can in turn result in algal blooms. For the effective management of watersheds and the prevention of water quality problems related to nonpoint organic matter (OM) sources, it is essential to pinpoint the predominant OM sources. Several potential OM sources were sampled from upper agricultural watersheds, such as fallen leaves, riparian reeds, riparian plants, paddy soil, field soil, riparian soil, cow manure, and swine manure. Stream samples were collected during two storm events, and the concentrations of dissolved organic carbon (DOC) and phosphorous (DOP) from these OM sources and stream samples were assessed. DOM indicators using fluorescence spectroscopy, including HIX, FI, BIX, and EEM-PARAFAC, were evaluated in terms of their relevance in discerning DOM sources during storm events. Representative DOM descriptors were chosen based on specific criteria, such as value ranges and pronounced differences between low and high-flow periods. Consequently, the spectral slope ratio (SR) paired with fluorescence index (FI) using end-member mixing analysis (EMMA) proved to be suitable for estimating the contribution of organic carbon (OC). The contribution of each organic phosphorous (OP) in stream samples was determined using the phosphorous-to-carbon (P/C) ratio in conjunction with the OC contribution. Notably, OP derived from swine manure in stream samples was found to make the most dominant contribution, ranging from 61.3% to 94.2% (average 78.1% ± 12.7%). The results of this research offer valuable insights into the selection of suitable indicators to recognize various OM sources and highlight the main sources of OP in forested-agricultural watersheds.

A Read-In Integrated Circuit for IR Scene Projectors Adopting a Sub-Frame Control Technique for Minimizing the Temperature Loss (온도 손실의 최소화를 위해 Sub-Frame 제어 기법을 적용한 적외선 영상 투사기용 신호입력회로)

  • Shin, Uisub;Cho, Min Ji;Kang, Woo Jin;Jo, Young Min;Lee, Hee Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.113-118
    • /
    • 2016
  • In this paper, a read-in integrated circuit (RIIC) for IR scene projectors (IRSPs) adopting a sub-frame control technique is proposed, which minimizes the reduction of the apparent temperature of the IR images projected from IRSPs operating at a frame rate of 30 Hz. The proposed sub-frame control technique significantly reduces the amount of scene data loss on capacitors, which is caused by leakage currents flowing through MOSFET switches during holding periods, by dividing a unit frame into 8 sub-frames and refreshing the same scene data for each sub-frame. A current-drive RIIC was designed for the higher apparent temperature of IR radiated from the emitter, and it receives the scene data as a form of analog voltages from an external DAC. A prototype chip with a $64{\times}32$ RIIC array was fabricated using Magnachip/SKhynix $0.35{\mu}m$ 2-poly 4-metal CMOS process, and the measured maximum output data current is $230.3{\mu}A$. This amount of current ensures the projection of IR images whose maximum apparent temperature is $366.2^{\circ}C$ in the mid-wavelength IR (MWIR) when applied to a prototype emitter having a resistance of $15k{\Omega}$.