• Title/Summary/Keyword: flowering type

Search Result 255, Processing Time 0.029 seconds

Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars (양절형 밀 생장에 대한 온도의 영향과 유전자 발현 양상)

  • Heo, Ji Hye;Seong, Hye Ju;Yang, Woon Ho;Jung, Woosuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.384-394
    • /
    • 2019
  • We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We found that the growth of Jinpum was different from that of the alternative wheat cultivars, which were bred in Korea, at 50 days after treatment. While the Jinpum wheat grown at 17℃ showed vegetative stage growth, that grown in the 23℃ growth chamber entered the heading and flowering stage. The differences in the expression of 16 genes known to be involved in high-temperature responses were checked by using Jinpum wheat 50 days after two temperature treatments (17℃ and 23℃), which showed apparent differences in expression between the higher and lower temperatures during the growth phase. In the 23℃ treatment samples, the genes with increased expression were HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, and Histone H2A, while the genes with decreased expression were VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL, and MYB73. YUCCA2, HSP101, ERF1, and VRN-A1 showed a significant difference in gene expression between lower- and higher-temperature conditions. Overall, combining the means of the expression of various genes involved in thermosensing, vernalization, and abiotic stresses, it is possible to conclude that different sets of genes are involved in vernalization and summer depression of wheat under long term, high ambient temperature conditions.

A Study on the Space Planning and Landscape of 'Unjoru(雲鳥樓)' as Illustrated in the Family Hereditary Drawing, "Jeolla Gurye Ohmidong Gado(全羅求禮五美洞家圖)" ('전라구례오미동가도(全羅求禮五美洞家圖)'를 통해 본 운조루(雲鳥樓)의 공간배치계획과 경관 고찰)

  • Shin, Sang-sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.48-63
    • /
    • 2013
  • The results of the study on the space planning and landscape design of Unjoru(雲鳥樓) through the 'Jeolla Gurye Omidong Gado(全羅求禮五美洞家圖)' drawn using GyeHwa(界畵) technique are as follows. First, 'Omidong Gado' is believed to date back to the period when Unjoru(1776~1783) was established for the following reasons: (1) The founder, Yoo-IJu(柳爾?), sent the drawing for the house while he was serving as the governor of YongCheon county(龍川府史). (2) It shows the typical dwelling houses' space division and its location is in a good spot with mountain in the back and water in front(背山臨水) and there is every indication of scheme drawing. (3) Front gate was changed and remodeled to a lofty gate in 1804. Second, Nogodan & Hyeongjebong of Jiri Mountain sit at the back of Unjoru, and faces Obong mountain and Gyejok mountain. In addition, the Dongbang stream flowing to the east well illustrates the Pungsu theory of mountain in the back and water in the front. Third, the house is structured in the shape resembling the character 品, divided into 5 areas by hierarchical order in the cross line from all directions. The site, which includes the outdoor yard and the back garden, consists of 5 blocks, 6 yards and 2 gardens. Fourth, the outdoor yard with aesthetical value and anti-fire function, is an ecological garden influenced by Confucianism and Taoism with a pond (BangJiWonDo Type, 方池圓島形) at the center. Fifth, the Sarang yard(舍廊庭) is decorated with terrace garden and flower garden, and the landscaping components such as oddly shaped stone, crane, plum, pine tree, tamarisk tree and flowering plants were used to depict the ideal fairy land and centrally placed tree for metaphysical symbolism. The upper floor of Sarangchae commands distant and medium range view, as well as upwards and downwards. The natural landscape intrudes inside, and at the same time, connects with the outside. Sixth, pine forest over the northern wall and the intentionally developed low hill are one of the traditional landscaping techniques that promotes pleasant residential environment as well as the aesthetics of balanced fullness.

Lodging-Tolerant, High Yield, Mechanized-Harvest Adaptable and Small Seed Soybean Cultivar 'Aram' for Soy-sprout (내도복 다수성 기계수확 적응 소립 나물용 콩 '아람')

  • Kang, Beom Kyu;Kim, Hyun Tae;Ko, Jong Min;Yun, Hong Tai;Lee, Young Hoon;Seo, Jeong Hyun;Jung, Chan Sik;Shin, Sang Ouk;Oh, Eun Yeong;Kim, Hong Sik;Oh, In Seok;Baek, In Youl;Oh, Jae Hyun;Seo, Min Jeong;Yang, Woo Sam;Kim, Dong Kwan;Gwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • 'Aram' is a soybean cultivar developed for soy-sprout. It was developed from the crossing of 'Bosug' (Glycine max IT213209) and 'Camp' (G. max IT267356) cultivars in 2007. F1 plants and F2 population were developed in 2009 and 2010. A promising line was selected in the F5 generation in 2011 using the pedigree method and it was evaluated for agronomic traits, yield, and soy-sprouts characteristics in a preliminary yield trial (PYT) in 2012 and an advanced yield trial (AYT) in 2013. Agronomic traits and yield were stable between 2014 and 2016 in the regional yield trial (RYT) in four regions (Suwon, Naju, Dalseong, and Jeju). Morphological characteristics of 'Aram' are as follows: determinate plant type, purple flowers, grey pubescence, yellow pods, and small, yellow, and spherical seeds (9.9 g 100-seeds-1) with a light brown hilum. The flowering date was the 5th of August and the maturity date was the 15th of October. Plant height, first pod height, number of nods, number of branches, and number of pods were 65 cm, 13 cm, 16, 4.5, and 99, respectively. In the sprout test, germination rate and sprout characteristics of 'Aram' were comparable to that of the 'Pungsannamulkong' cultivar. The yield of 'Aram' was 3.59 ton ha-1 and it was 12% higher than that of 'Pungsannamulkong' in southern area of Korea. The yield of 'Aram' in the Jeju region, which is the main region for soybean sprout production, was 20% higher than that of 'Pungsannamulkong'. The height of the first pod and the tolerance to lodging and pod shattering, which are connected to the adaptation to mechanized harvesting, were higher in 'Aram' compared to those in 'Pungsannamulkong'. Therefore, the 'Aram' cultivar is expected to be broadly cultivated because of its higher soybean sprout quality, and seed yield and better adaptation to mechanized harvesting. (Registration number: 7718)

Adaptability of the high first pod height, shattering-resistant soybean cultivar 'Saegeum' to mechanized harvesting (고착협 내탈립 기계수확 적응 장류·두부용 콩 품종 '새금')

  • Kim, Hyun Tae;Han, Won Young;Lee, Byung Won;Ko, Jong Min;Lee, Yeong Hoon;Baek, In Youl;Yun, Hong Tai;Ha, Tae Joung;Choi, Man Soo;Kang, Beom Kyu;Kim, Hyun Yeong;Seo, Jeong Hyun;Kim, Hong Sik;Shin, Sang Ouk;Oh, Jae Hyun;Kwak, Do Yeon;Seo, Min Jeong;Song, Yoon Ho;Jang, Eun Kyu;Yun, Geon Sik;Kang, Yeong Sik;Lee, Ji Yun;Shin, Jeong Ho;Choi, Kyu Hwan;Kim, Dong Kwan;Yang, Woo Sam
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.496-503
    • /
    • 2019
  • The soybean cultivar, 'Saegeum', has been developed for preparing soy-paste and tofu. The soybean cultivars 'Daepung' and 'SS98207-3SSD-168' were crossed in 2003 to obtain 'Saegeum'. Single seed descent method was used to advance the generation from F3 to F5, and the plant lines with promising traits were selected from F6 to F7 by pedigree method. The preliminary yield (PYT) and advanced yield trials (AYT) were conducted from 2009 to 2010, and the regional yield trial (RYT) was conducted in 12 regions between 2011 and 2013. The morphological characteristics of 'Saegeum' were as follows: determinate plant type, white flower, tawny pubescence color, and brown pod color. Flowering and maturity dates were August 2, XXXX and October 17, XXXX, respectively. Plant height, first pod height, number of nodes, number of branches, and number of pods were 79 cm, 18 cm, 16, 2.3, and 44, respectively. The seed characteristics of 'Saegeum' were as follows: yellow spherical shape, yellow hilum, and the 100-seed weight was 25.4 g. 'Saegeum' was resistant to bacterial pustule and SMV in the field test, and its lodging resistance was mildly strong, whereas its shattering resistance was excellent. The ability of this cultivar to be processed into tofu, soybean malt, and other fermented products was comparable with that of 'Daewonkong'. The yield of 'Saegeum' in the adaptable regions was 3.02 ton ha-1. Thus, 'Saegeum' is adaptable to mechanized harvesting because of its high first pod height, as well as lodging and shattering resistance. (Registration number: 5929)

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF