• Title/Summary/Keyword: flowering buds

Search Result 70, Processing Time 0.024 seconds

In Vitro Flowering System (In Vitro 시스템에 의한 화호형성)

  • 류장렬;이행순;이광웅
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.213-237
    • /
    • 1987
  • In vitro flowering system may minimize the confounded influence of non-floral meristem parts of plants in studying the relationship of a given treatment and flowering responses. We have induced flower buds from plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng, which circumvented the normal 2-year juvenile period before flowering. The result suggests that the adulthood of ginseng root explants in the experiment previously conducted by Chang and Hsing (1980; Nature 284: 341-342) is not prerequired to flowering of plantlets regenerated through somatic embryogenesis. We have also induced flower buds from elongated axillary brandches from cotyledonary nodes by culturing ginseng zygotic embryos, seedlings, and excised cotyledonary nodes. It was found that 6-benzyladenine (BA) supplemented to the medium was essential for flowering, whereas abscisic acid (ABA) was inhibitory. Gibberellic acid(GA3) was also required for flowering when ABA was present with BA in the medium. The results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respective-ly, in the induction of flowering of ginseng. Tran Thanh Van (1980; Int. Rev. Cytol., Suppl. IIA: 175-194) has developed the "thin cell layer system" in which the induction of shoots, roots, or flower buds from epidermal layer explants were controlled by culture conditions and exogenous growth regulators in the medium, Utilizing the thin cell layer system, Meeks-Wagner et al. (1989; The Plant Cell 1: 25-35) have cloned genes specifically expressed during floral evocation. However, the system is too tedious for obtaining a sufficient amount of plant materials for biochmical and molecular biological studies of flowering. We have developed a garlic callus culture system and one obvious advantaging over the thin cell layer system is that an abundant cells committed to develope into flower buds proliferate. When the above cells were compared by two-dimensional gel electrophoresis with those which have just lost the competence for developing into flower buds, a few putative proteins specific to floral evocation were detected. The garlic callus culture system can be further explored for elucidation of the molecular biological mechanism of floral evocation and morphogenesis.hogenesis.

  • PDF

Physiology of Strobilus Initiation in Slash Pine -IV. Peroxidase Activity during the Period of Female Strobilus Initiation (슬래쉬 소나무의 화아원기형성(花芽原基形成)의 생리적(生理的) 연구(硏究) -IV. 자화형성기간(雌花形成期間)동안의 정아의(頂芽) PEROXIDASE의 변화(変化))

  • Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.50 no.1
    • /
    • pp.5-9
    • /
    • 1980
  • With polyacrylamide gel electrophoresis, peroxidase isoenzyme patterns in the terminal buds of grafted, 20-year-old Pinus elliottii trees were compared between abundant-flowering and poor-flowering trees during the period of female flower bud initiation. A total of nine peroxidase bands were observed in the terminal buds. The total amount of peroxidase enzymes in slash pine buds showed no significant difference between the abundant-flowering and poor-flowering trees. However, the fifth band from the gel front was observed in all the samples of abundant-flowering trees throughout the sampling period (July 8 to September 17), while this band was absent in most of the poor-flowering trees.

  • PDF

Control of In Vitro Flowering of Ginseng(Panax ginseng C. A. Meyer) by Growth Regulators (생장조절제에 의한 인삼(Panax ginseng C. A. Meyer)의 기내 화아형성 조절)

  • 이행순
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.255-264
    • /
    • 1989
  • Ginseng zygotic embryos, seedlings, and exised cotyledonary nodes were cultured on Murashinge and Skoog's(MS) medium, supplemented with 6-benzyladenine(BA) and gibberellic acid(GA3) to induce flower buds. As the concenteration of nitrogen compounds in MS medium was reduced to half of its strength, the flowering frequency of zygotic embryos increased up to 90%. The optimum concentration of sucrose in the medium for flowering of seedlings was 30-60 g/1. In all cases flower buds were formed on elongated axillary branches from the cotyledonary nodes, while the apices remained vegetative. When zygotic embryos and excised cotyledonary nodes were cultured on the medium, supplemented with all possible combinations of BA, GA3, and abscisic acid(ABA) of 5 $\mu$M indole-3-acetic acid(IAA) in the above combinations did not affect flowering. These results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respectively, in the induction of flowering of ginseng.

  • PDF

Night Interruption and Night Temperature Regulate Flower Characteristics in Cymbidium

  • Kim, Yoon-Jin;Park, Chae-Jeong;Rho, Hyung-Min;Kim, Ki-Sun
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • We investigated the influences of night interruption (NI) and night temperature on flowering and flower coloration in Cymbidium. Cymbidium 'Red Fire' and 'Yokihi' were grown under a 9 hours photoperiod (control), a 9 hours photoperiod with NI at a low light intensity (LNI) of 3-7 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, or a 9 hours photoperiod with NI at a high light intensity (HNI) of 120 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for four hours (22:00-02:00 HR) for 16 weeks during the reproductive growth stage (Experiment 1). Thirty month-old Cymbidium 'Red Fire' plants with initiated flowering buds were placed in four different growth chamber with night temperature set points of 6, 9, 12, or $15^{\circ}C$ for 16 hours (18:00 to 09:00 HR) and a daytime temperature of $25^{\circ}C$ (Experiment 2). In Experiment 1, the numbers of visible buds and flowers increased, and time to flowering decreased in both the LNI and HNI treatments, as compared to the control in both cultivars. Red color in Cymbidium 'Red Fire' increased by both LNI and HNI, as evidenced by an increased $a^*$ in plants grown under these conditions, relative to those grown under the control condition. Number of days to visible buds at 9-$15^{\circ}C$ ranged from 31-34 days, as compared to 39 days at $6^{\circ}C$ in Experiment 2. Although as the temperature increased days to flowering decreased when the plant was grown at $15^{\circ}C$ as compared to 6, 9, or $12^{\circ}C$, the red color ($a^*$) also decreased. The number of flowers and percent flowering increased when the night temperature was maintained higher than $9^{\circ}C$. Therefore, NI treatment and maintaining the night temperature at approximately 9-$12^{\circ}C$ during the winter season after flower spike initiation in the reproductive developmental growth stage improve flower quality and controls flowering time.

Physiology of Strobilus Initiation in Slash Pine II. Ovulate Strobilus Initiation in Relation to Carbohydrate and Nitrogen Metabolism of Terminal Buds (슬래쉬소나무의 화아원기(花芽原基) 형성(形成)의 생리학적(生理學的) 연구(硏究) (II) - 정아(頂芽)의 탄수화물(炭水化物)과 질소(窒素) 신진대사(新陳代謝)와 자화(雌花) 원기형성(原基形成)과의 관계(關係))

  • Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.16-26
    • /
    • 1980
  • Soluble carbohydrates and free amino acids in the terminal buds of Pinus elliottii were analyzed to understand the nutritional status of the buds during the period of female strobilus initiation. Grafted, 18-year-old slash pine trees in a seed orchard were divided into two groups, abundant-flowering (AFG) and poor-flowering group (PFG) according to their flowering history. Four types of terminal buds, with two types from each group, were examined: (1) large buds in upper crown (female-producing buds) and small buds in lower crown (male-producing) in AFG, (2) large buds in upper crown (vegetative buds) and small buds in lower crown (male-producing) in PFG. Bud samples were collected four times from late July to early September. Free sugars and free amino acids (75% ethanol-soluble) were determined by gas chromatography and automatic analysis, respectively. Sugar content in the large buds of both groups was greater than in the small buds of the same group. Fructose and glucose were major sugars found in the bud tissue. Arginine was the most abundant amino acid in all four types of buds, with the concentration increased from 23% in late July to 60% in early September. Arginine and total amino acid content in the female-producing buds of AFG was much lower than three other types of buds. When female-producing buds and male-producing buds of AFG were compared in their arginine content, the former contained about same amount as the latter in late July, but showed one-fourth of the latter in early September. The low level of argining in the female-producing buds suggested a minimal or negative role of arginine in the initiation of female flower primordia. A higher sugar to amino acid ratio was observed with female-producing buds of AFG than with vegetative or male-producing buds of either flowering group. The low amino acid content in the female­producing buds suggested that initiation of female strobilus primordia was associated with temporary reduction in the metabolic activity of the buds.

  • PDF

Diagnosis and management of the early defoliation of Korean flowering cherry in Gurye (구례 왕벚나무 가로수의 조기낙엽 진단 및 친환경적 관리 방법)

  • Han, Areum;Jin, Seon-deok;Jeong, Gilsang;Won, Ho-yeon;Lee, Young-sang;Son, Se Hwan;Choi, Sunghoon;Kang, Hyejin;Lee, ll Hwan;Han, Ah Reum
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.682-689
    • /
    • 2019
  • The Korean flowering cherry is a popular tree. However, the trees have started to defoliate early, including those in Gurye. Thus, it is necessary to identify the causes of the early defoliation and how to manage them. Therefore, the purpose of this study was threefold: 1) to investigate the early defoliation of flowering cherry trees, 2) to identify the differences in growth and flowering of the trees in response to treatment, and 3) to suggest an optimal treatment for the trees. The experiment was conducted in Gurye at a site 3km long with 102 flowering cherry trees along a street. There were three treatments: control, an environmentally friendly insecticide and a disinfectant(treatment 1), and an environmentally friendly insecticide, a disinfectant, and irrigation (treatment 2). The trees in Gurye were compared to trees on Jeju Island. The defoliation rates of the flowering cherry in Gurye were significantly higher than those on Jeju Island at each measurement time. Within Gurye, the defoliation rate was significantly higher in the trees of the control than in the two treatments and only the trees in the control from Gurye had shot-hole disease. Post-treatment, twigs collected from the control during April showed significantly poorer growth, lower numbers of flowering buds per twig, and lower numbers of foliar buds. The trees given treatment 1 showed significantly greater growth, number of total buds, flowering buds per twig, and density of buds than the trees given treatment 2. After analyzing the correlations, it was established that early defoliation led to poorer growth, affecting the flowering of the trees.

Effects of Temperature and Ethylene Response Inhibitors on Growth and Flowering of Passion Fruit

  • Liu, Fang-Yin;Peng, Yung-Liang;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.356-363
    • /
    • 2015
  • This study examined the effects of different day/night temperature regimes or silver ion on growth and flowering of passion fruit 'Tai-nung No.1'. Low temperature treatment ($20/15^{\circ}C$) caused passion fruit cultivar 'Tai-nung No.1' to fail to flower. Flowering induction occurred within a temperature range of $20-30^{\circ}C$, with no significant difference in the days to first flower bud and the total number of flower buds between plants grown at $30/25^{\circ}C$ and $25/20^{\circ}C$. However, plants grown at $30/25^{\circ}C$ exhibited their first flower buds set on the higher nodes and had higher abortion rates of flower buds than those at $25/20^{\circ}C$. Plants grown at $30/25^{\circ}C$ had the most rapid growth and the shortest plastochron. We also evaluated the effect of the ethylene response inhibitors silver nitrate ($AgNO_3$) and silver thiosulfate (STS) on growth and flowering of potted passion fruit 'Tai-nung No.1', when they were exposed to low temperature conditions ($20/15^{\circ}C$) following chemical treatments ($AgNO_3$ or STS, at 0.5 or 1.0 mM). $AgNO_3$ and STS treatments induced flower formation and initial flower bud formation within approximately two weeks at $20/15^{\circ}C$ whereas non-treated control plants exhibited no flower formation. ACC content and activity of ACC oxidase in the leaves of passion fruit 'Tai-nung No.1'exposed to low temperature conditions ($20/15^{\circ}C$) were significantly inhibited by the ethylene inhibitor treatments. These results indicate that ethylene, which is produced under low temperature conditions, plays an important role in inhibiting flower formation in passion fruit.

Effects of ${\alpha}-ketol$ type oxylipin (KODA) on flowering and its application as a growth regulater

  • Yokoyama, Mineyuki
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.27-39
    • /
    • 2005
  • a-Ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, or 9-hydroxy-10 -oxo-12(Z), 15(Z)-octadecadienoic acid] was found as a stress-induced factor in Lemna paucicostata. KODA reacts with catecholamines to generate many products that strongly induce flowering in L. paucicostata, although KODA itself was inactive. KODA contains an asymmetric carbon at the 9-position in the molecule; the 9-hydroxyl group is predominantly 9R, with an enantiomeric excess of 40% (70% 9R and 30% 9S). We analyzed two major products of the reaction between KODA and norepinephrine, named FN1 and FN2. FN1 was identified as a tricyclic a-ketol fatty acid, 9(R)-11-{(2'R,8’R,10'S,11'S)-2',8'-dihydroxy-7'-oxo-11'-[(Z)-2-pentenyl]-9'-oxa-4'-azatricyclo[6.3.1.01.5]dodec-5'en-10'-yl}-9-hydroxy-10-oxoundecanoic acid. FN2 was the C-9 epimer of FN1. FN1 was derived from 9R-type KODA and FN2 from 9S-type. FN1 showed strong flower-inducing activity, but FN2 was inactive. Pharbitis nil (violet) is a typical short-day plant; flowering can be induced by exposing a seedling cultivated under continuous light to a single 16-h dark period. We analyzed endogenous KODA levels and showed that they were closely related to flower induction: KODA sharply increased in the later part of a 16-h dark period, on the other hand, it failed to increase in the night-break experiment. In addition to it, KODA increased transiently in immature flower buds in all the plants we examined, including P. nil. No such increase of KODA was seen in foliar buds of P. nil. When KODA was sprayed on seedlings of Pharbitis, flower induction was promoted only by the (R)-form of KODA. We also found that KODA enhances flowering in garden plants such as carnations and impatienses. These phenomena indicate that KODA may be involved in flowering formationg of plants and it is potentially useful for a regulating agent for commercial plant flowering.

  • PDF

Flowering Response According to Different Seeding Dates and Day-length Treatment in Perilla (들깨 파종기와 일장처리에 의한 품종간 개화반응)

  • 정찬식;오기원;김현경;권일찬;배석복;박충범;곽용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.490-494
    • /
    • 2003
  • To understand flowering response under diverse day-length condition and the movement of floral stimulus, we used six perilla accessions which showed diverse days to flowering. Though the growth phase was reported as irreversible between vegetative and reproductive stage, perilla showed reversible growth phase according to day length increase in May and June. When it sowed in March, flowering response was started in early May and vegetative and reproductive phase was coexisted in late June. When a part of a perilla plant was treated under short day condition, only apical buds on main stem or branches were flowered but other long day conditioned apical buds were not flowered. With this result it is suggested that the floral stimulus can not be transferred to other part of perilla.

Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process

  • Ding, Feng;Zhang, Shuwei;Chen, Houbin;Peng, Hongxiang;Lu, Jiang;He, Xinhua;Pan, Jiechun
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1259-1267
    • /
    • 2018
  • Litchi (Litchi chinensis Sonn.) is an important subtropical fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. Previous studies indicate that low-temperature is a key factor in litchi floral induction. In order to reveal the genetic and molecular mechanisms underlying the reproductive process in litchi, we had analyzed the transcriptome of buds before and after low-temperature induction using RNA-seq technology. A key flower bud differentiation associated gene, a homologue of FLORICAULA/LEAFY, was identified and named LcLFY (GenBank Accession No. KF008435). The cDNA sequence of LcLFY encodes a putative protein of 388 amino acids. To gain insight into the role of LcLFY, the temporal expression level of this gene was measured by real-time RT-PCR. LcLFY was highly expressed in flower buds and its expression correlated with the floral developmental stage. Heterologous expression of LcLFY in transgenic tobacco plants induced precocious flowering. Meantime, we investigated the sub-cellular localization of LcLFY. The LcLFY-Green fluorescent protein (GFP) fusion protein was found in the nucleus. The results suggest that LcLFY plays a pivotal role as a transcription factor in controlling the transition to flowering and in the development of floral organs in litchi.