• Title/Summary/Keyword: flow-feedback

Search Result 328, Processing Time 0.022 seconds

Regeneration of Burner Type Diesel Particulate Trap System Through Active Exhaust Gas Feeding (배기 가스 유량 제어를 이용한 버너방식 디젤 입자상물질 제거 장치의 재생)

  • 김재업;박동선;이만복;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • The key point that guarantees the durability of the ceramic monolith filter is to lower peak temperature and temperature gradient inside filter during regeneration. The control of the exhaust gas flow rate into the filter, by the bypass technique of the exhaust gas, enables the gas temperature in filter to be constant for regeneration. A couple of methods, which are the ON/OFF and PID control of the bypass valve, were used for feedback control of the gas temperature. These techniques showed that the ceramic filter was regenerated perfectly under the peak temperature and peak temperature gradient limitations for durability.

  • PDF

Temperature Control of Ondol Indoor-Space (온돌 실내공간의 온도제어)

  • Shin, C.B.;Lee, J.W.;Sah, J.Y.;Lee, S.C.;Cho, S.H.;Suh, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.538-545
    • /
    • 1995
  • The heat transfer model of ondol heating system is derived in the linear form. The step responses of On-Off controller, PID controller and Position type fuzzy controllers are compared in the sense of several aspects : variation of temperature feedback variable, variation of supplied heat quantity by the boiler, variation of flow rate, variation of thickness of the base, variation of the outdoor temperature.

  • PDF

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.

An Integrated Planning of Production and Distribution in Supply Chain Management using a Multi-Level Symbiotic Evolutionary Algorithm (다계층 공생 진화알고리듬을 이용한 공급사슬경영의 생산과 분배의 통합계획)

  • 김여근;민유종
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.1-15
    • /
    • 2003
  • This paper presents a new evolutionary algorithm to solve complex multi-level integration problems, which is called multi-level symbiotic evolutionary algorithm (MEA). The MEA uses an efficient feedback mechanism to flow evolution information between and within levels, to enhance parallel search capability, and to improve convergence speed and population diversity. To show the MEA's applicability, It is applied to the integrated planning of production and distribution in supply chain management. The encoding and decoding methods are devised for the integrated problem. A set of experiments has been carried out, and the results are reported. The superiority of the algorithm's performance is demonstrated through experiments.

A Study on Character Recognition using HMM and the Mason's Theorem

  • Lee Sang-kyu;Hur Jung-youn
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.259-262
    • /
    • 2004
  • In most of the character recognition systems, the method of template matching or statistical method using hidden Markov model is used to extract and recognize feature shapes. In this paper, we used modified chain-code which has 8-directions but 4-codes, and made the chain-code of hand-written character, after that, converted it into transition chain-code by applying to HMM(Hidden Markov Model). The transition chain code by HMM is analyzed as signal flow graph by Mason's theory which is generally used to calculate forward gain at automatic control system. If the specific forward gain and feedback gain is properly set, the forward gain of transition chain-code using Mason's theory can be distinguished depending on each object for recognition. This data of the gain is reorganized as tree structure, hence making it possible to distinguish different hand-written characters. With this method, $91\%$ recognition rate was acquired.

  • PDF

Auto-tuning of boiler drum level controller in Thermal Power Plant (화력 발전소 보일러 드럼수위 제어기의 자동 동조)

  • Lee, J.H.;Joo, H.Y.;Byun, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2584-2586
    • /
    • 2000
  • A drum level control is one of the most important control systems in thermal power plant. The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant set-point regardless of disturbance such as main steam flow. The implemented drum level controller is the cascade PI controller. The important factor in drum level controller is the parameters of two PI controllers. The tuning of PI controller parameter is tedious and time-consuming job. In this paper, the relay feedback Ziegler - Nichols tuning method extended to auto-tune cascade PI drum level controller. Finally, the simulation result using boiler model in Power Plant shows the validity of auto-tuned cascade PI controller.

  • PDF

Application of the Goore Scheme to Turbulence Control for Drag Reduction(II)-Application to Turbulence Control-

  • Lee, Chang-Hun;Kim, Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1580-1587
    • /
    • 2001
  • In Part I, we extended the capability of the Goore Scheme for application to multi-dimensional problems and improved convergence performance. In this paper, we apply the improved Goore Scheme to th e control of turbulence for drag reduction. Direct numerical simulations combined with the control scheme are carried out to simulate a controlled turbulent channel flow at low Reynolds number. The wall blowing and suction is applied through the Goore algorithm using the total drag as feedback. An optimum distribution of the wall blowing and suction in terms of the wall-shear stresses in the spanwise and streamwise directions is sought. The best case reduces drag by more than 20 %.

  • PDF

Biped Walking of Hydraulic Humanoid Robot on Inclined Floors (유압식 이족 휴머노이드 로봇의 경사면 보행 연구)

  • Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.258-266
    • /
    • 2012
  • This paper describes a biped walking algorithm for a hydraulic humanoid robot on inclined floors. To realize stable and robust biped walking, the walking algorithm was divided into five control strategies. The first is a joint position control strategy. This strategy is for tracking desired joint position trajectories with a gain switching. The second is a multi-model based ZMP (Zero Moment Point) control strategy for dynamic balance. The third is a walking pattern flow control strategy for smooth transition from step to step. The fourth is an ankle compliance control, which increases the dynamic stability at the moment of floor contact. The last is an upright pose control strategy for robust walking on an inclined floor. All strategies are based on simple pendulum models and include practical sensory feedback in order to implement the strategies on a physical robot. Finally, the performance of the control strategies are evaluated and verified through dynamic simulations of a hydraulic humanoid on level and inclined floors.

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.