• 제목/요약/키워드: flow-based analysis

검색결과 4,558건 처리시간 0.033초

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

왕복동식 수소압축기의 흡입통로내 작동유체 유동해석 (Numerical Analysis on the Working Fluid Flow of Suction-passage for Reciprocating Compressor)

  • 이경환;라흐만;심규진;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1201-1207
    • /
    • 2008
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.

사용할 변수의 예측에 사용되는 반복적 알고리즘의 계산순서 재정렬을 통한 수행 속도 개선 (Improvement of Iterative Algorithm for Live Variable Analysis based on Computation Reordering)

  • 윤정한;한태숙
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권8호
    • /
    • pp.795-807
    • /
    • 2005
  • 기존의 LVA를 수행하는 알고리즘은 반복적 정보흐름분석(Iterative Data Flow Analysis -DFA) 프레임워크에 따라 프로그램 전체를 반복적으로 스캔하면서 진행되어진다. Zephyr[1] 컴파일러의 경우 이와 같은 반복적 알고리즘으로 LVA를 수행하는 시간이 전체 컴파일 시간에서 약 $7\%$를 차지하고 있다. 기존 LVA 알고리즘은 여러 가지로 개선할 점들이 있다. LVA를 수행하는 기존의 반복적 알고리즘은 알고리즘의 특성상 방문하지 않아도 되는 basic block들에 대한 방문이 잦고, 살아있는 변수들의 집합을 점차적으로 증가해 가면서 구하는 특성상 큰 변수들의 집합에 대한 연산을 계속 하게 된다. 우리는 기존의 알고리즘과 달리 사용된 변수들(USE set)에 대해 Control Flow Graph(CFG)에서 거슬러 올라가면서 LVA를 수행하는 반복적인 알고리즘의 개선안을 제안하고자 한다. 이는 기존의 알고리즘과 같은 결과를 내면서 더 빠른 알고리즘이다. DFA에서의 flow equation을 적용하는 순서를 바꿈으로써 많은 중복 계산을 줄일 수 있다. 이러한 방법으로 인해 basic block을 방문해야만 하는 횟수를 줄이면서 전체 수행 시간을 단축시킨다. 간단한 추가 구현만으로 Zephyr 컴파일러에서의 실험 결과에서 LVA만을 수행하는 시간에서 기존의 알고리즘보다 $36.4\%$ 짧은 시간을 사용하였고, 이는 전체 컴파일 시간을 $2.6\%$ 줄이는 효과를 가져왔다.

자기점성유체 댐퍼의 자기장 및 유동 해석에 따른 성능비교 (Comparison of Performances refer to Magnetic and Fluid Analysis of Magneto-Rheological Flow Damper)

  • 송준한;손성완;이규섭;전종균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.98-102
    • /
    • 2009
  • The magneto-rheological fluid expresses different cohesiveness according to the strength of the external electric current. To manufacture the magneto-rheological fluid damper that uses such characteristics of the fluid, a flow analysis of the inner damper was conducted to forecast the damper's capacity. In addition, using the finite element method software, analysis on the characteristics of electromagnetic field around the coil operation unit inside the damper. Based on the result of the analysis, a single core damper and a double core damper were built and tested for their dynamic function. Based on the result of the experiment, the propriety of the flow analysis was demonstrated, and the proposed model was verified.

  • PDF

수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로- (Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin -)

  • 김경훈;권헌각;안정민;김상훈;임태효;신동석;정강영
    • 한국환경과학회지
    • /
    • 제26권8호
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석 (Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method)

  • 김성희;홍석윤;길현권;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

공력음향학을 이용한 축류홴의 삼차원 소음 해석 (Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics)

  • 김주형;김진혁;신승열;김광용;이승배
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF

암석절리와 균열망내에서의 채널흐름에 관한 이론적 수치해석적 연구 (A Theoretical and Numerical Study on Channel Flow in Rock Joints and Fracture Networks)

  • 송명규;주광수
    • 터널과지하공간
    • /
    • 제4권1호
    • /
    • pp.1-16
    • /
    • 1994
  • The study on the flow characteristics and analysis of groundwater in discontinuous rock mass is very important, since the water inflow into the underground opening during excavation induces serious stability and environmental problems. To investigate the flow through single rock joint, the effect of various aperture distribution on the groundwater flow has been analyzed. Observed through the analysis is the "channel flow", the phenomenon that the flow is dominant along the path of large aperture for given joint. The equivalent hydraulic conductivity is estimated and verified through the application of the joint network analysis for 100 joint maps generated statistically. Both the analytic aproach based on isotropic continuum premise and the joint network analysis are tested and compared analyzing the gorundwater inflow for underground openings of different sizes and varying joint density. The joint network analysis is considered better to reflect the geometric properties of joint distribution in analyzing the groundwater flow.ater flow.

  • PDF

플로우 시각화 기반의 네트워크 보안 상황 감시 (Monitoring Network Security Situation Based on Flow Visualization)

  • 장범환
    • 융합보안논문지
    • /
    • 제16권5호
    • /
    • pp.41-48
    • /
    • 2016
  • 본 논문은 플로우 시각화 기반의 네트워크 보안 상황 감시 방법인 VisFlow를 제안하며, 기존 트래픽 플로우 시각화 기술의 단점인 대량 트래픽 발생 시의 직관성 상실 문제, 대칭적 주소 공간에 의한 반사현상 문제, 종단간 연결 의미의 상실 문제를 해결하고자 한다. VisFlow는 단순하고 효율적인 보안 시각화 인터페이스로써 플로우 시각화 기술을 활용하여 개별적인 트래픽 데이터들에서는 볼 수 없었던 다양한 네트워크 현상들을 패턴으로 형상화하고 관리 네트워크 내의 보안 상황을 실시간으로 분석 및 감시하는 방법이다. 트래픽 플로우의 포트 역할 분석 방법을 이용하여 노드 유형과 중요 정보를 식별 분류하고, 분류된 정보는 중요도에 따라 2D/3D 공간 상에 단순화 및 강조하여 표시함으로써 직관성과 실용성을 높인다. 또한, IP주소값에 기반한 비대칭적 노드 배치를 통해 반사현상 문제를 해결하고 노드간의 연결선을 활용하여 종단간의 세션 의미를 유지함으로써 정보성은 높인다. 관리자는 VisFlow를 통해 방대한 트래픽 데이터를 쉽게 탐색하고 전체 네트워크 상황을 직관적으로 파악함으로써 네트워크 보안 상황을 효과적으로 감시할 수 있다.