• Title/Summary/Keyword: flow sheet

Search Result 524, Processing Time 0.027 seconds

Removal of Contaminants Using Natural Purification Method by Sheet Flow (박층류 자연정화공법을 이용한 오염물질의 제거)

  • Kim, Myounghwan;Lee, Du Han;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.451-451
    • /
    • 2018
  • 박층류 자연정화공법은 수로의 폭을 넓히고 수심을 낮추어 박층류를 조성하고, 이를 이용하여 하천을 정화하는 공법이다. 박층류가 조성되면 낮은 수심에서 상대적으로 느린 유속 조건이 형성되며 이 때 박층부에 침전된 오염물질은 자갈층 표면에 형성된 생물막에 의해 산화 분해되어 제거된다. 박층류에 의한 오염물질 제거는 생물막의 형성, 생물 산화를 위한 용존산소량 등이 중요한 인자로 작용하며, 박층부를 조성하기 위해서는 수심 10 cm, 유속 30~50 cm/s 의 조건이 적절하다. 본 연구에서는 박층류에 의한 자연정화 성능을 평가하기 위하여 용인시 오산천 일부 구간 고수부지에 사석자갈을 이용한 박층류 자연정화공법이 적용된 차집수로를 설치하고, 오산천으로 유입되는 농수로의 물을 공급하여 오염물질의 농도 변화를 측정하였다. 측정된 항목은 T-N, T-P, COD, DO 등이며, 측정 결과 박층류 자연정화 수로를 유출부에서의 오염물질의 농도가 유입부에서보다 저감되는 것을 확인 할 수 있었다.

  • PDF

Removal of High-Concentration Contaminants Causing of Green Algae in System of Sheet Flow (박층류 모형에서의 고농도 녹조 원인물질 제거)

  • Kim, Myounghwan;Lee, Du Han;Eom, Jung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.418-418
    • /
    • 2019
  • 낮은 수심, 저 유속의 수로 자갈층에 형성된 생물막을 이용하여 오염물질을 제거하는 박층류 자연정화기법의 효율적인 설계와 운영지침을 얻기 위하여 경기도 용인시 오산천 일부 구간에 현장적용을 위한 Test-bed를 조성하여 박층류 자연정화수로에서의 오염물질 제거 효율을 조사하였다. 오염물질은 녹조발생의 주요 원인물질인 인과 질소를 대상으로 하였고, 연구 조건은 일반적인 하천수에서의 오염 조건과 비점오염원으로부터 오염물질이 유입된 오염조건의 두 가지 조건을 가정하여 제거효율을 분석하였다. 분석 결과 모든 조건에서 박층류 수로를 통과할 때 오염물질의 농도가 감소함을 확인할 수 있었다. 특히 T-P 3 mg/L 이상, T-N 20 mg/L 이상의 고농도의 오염물질 유입시에 박층류 자연정화수로는 평상시보다 높은 60% 이상의 높은 제거 효율을 보였는데, 이를 통하여 박층류 자연정화기법이 고농도의 오염물질 제거에서도 제한적이지 않고 오히려 더 효과적임을 알 수 있었다.

  • PDF

Research on the Output Characteristic of Thermoelectric Module according to the thickness variation of Polymer Pad (고분자 필름의 두께변화에 따른 열전소자의 출력 특성변화에 관한 연구)

  • Jang, Ho-Sung;Kim, Jae-Jung;Kim, In-Kwan;Kim, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.976-981
    • /
    • 2006
  • In case of attaching thermoelectric module and heat source, the polymer pad is attached on the $Al_2O_3$ plate, which is cooling side of thermoelectric module, in order to enhance mechanical safety of the system. It is impossible to calculate the exact distribution of temperature and flow pattern of inner gap of thermoelectric module. Therefore CFD(Computational Fluid Dynamics) analysis was executed to determine the thermo-fluid phenomena and distribution by Fluent. As the result of these analysis, heat transfer was dominated by conduction and the difference of temperature was linear distribution according to the thickness of polymer sheet.

  • PDF

Investigation of Oxidation Sensitivity with Temperature of Steel Plate Type (강판 종별 온도에 따른 산화 민감도 조사)

  • KIM, JUHAN;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.455-464
    • /
    • 2019
  • Experiments were conducted to investigate the sensitivity of steel plate oxidation with temperature in a simulated furnace. Used steel plates were a general steel and a high tensile steel. Porous media burner (PM burner) used in model furnace was made for uniform temperature profile. The surrounding temperature was controlled by adjusting the flow rate of the mixture in the combustor. Oxide layer analysis was performed using SEM image analysis and EDS line scanning. Both steel sheets showed a tendency to increase the thickness of the steel sheet surface oxide layer as the temperature increases, and it was confirmed that the flaking phenomenon in surface oxidation layer appeared when the temperature was above a certain temperature.

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

A study on the factors affecting to material inflow in the drawing process (드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구)

  • Lee, Sung-Min;Shin, Jin-Hee;Kim, Kyung-A;Lee, Chun-Kyn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Process Development to Form Net-Shape Nosing Shells by the Backward Tracing Scheme of the Rigid-Plastic FEM and Its Experimental Confirmation (강-소성 유한요소법의 역추적기법을 이용한 정밀정형 쉘 노우징 부품의 성형공정 개발과 실험적 증명)

  • Kim, Sang-Hyeon;Lee, Jin-Hui;Im, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2118-2133
    • /
    • 1996
  • A preform is designed by the backward tracing scheme of the rigid-plastic finite element method(FEM) for net-shape shell nosing components without machining after forming. The current process of the shell nosing requires cost-consuming machining to produce final products. Here, the backward tracing scheme of the rigid-plastic FEM, a novel method for preform design of metal forming processes, derives a sound preform for net-shape shell nosing product. The current process is simulated by the rigid-plastic finite element analysis to check the metal flow involved in the forming with a trial preform and its modified preform. The two preforms are found to be inadequate for net-shape shell nosing product. The first application of the back ward tracing scheme derives a preform producing a not-shape shell nosing product. The first application of the backward tracing scheme derives a preform producing a net-shape product numerically, but it is difficult to be formed economically as a preform. Thus an improved preform is designed by the badkward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing components in view of economy of production and forming characteristics of the product. The preform in the current process and a modified preform are confirmed by a series of experiments and the results give the same deformation with the numerical ones. Finally the newly designed preform by the FEM was experimentally proved to be adequate in obtaining net-shape products.

Usefulness of Functional MRI for the study of concentration sheet (Functional MRI를 이용한 학습집중력 향상 시트 개발)

  • Kim, Chang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2985-2989
    • /
    • 2009
  • An experiment was conducted to examine the effects of ceramic sheet on concentration of students studies. To demonstrate the improvement in the concentration of study, we obtained functional magnetic resonance imaging (fMRI), which has superior time resolution and measures brain noninvasively by using intrinsic contrast agent. As a result of Brainwave measurement, we could verify the blood flow's activate in the nearby frontal lobe related to memory process and noticeable ratio change in absolute alpha wave and beta wave after the analysis of Brainwave measurement. fMRI ascertains the physiological function of the brain and is being used to prevent the trouble medically that can be caused before and after the operation. For the visibility of cranial nerve network, many researches will be carried out to develope the product which is related to brain like concentration of study.

Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer (스월형 분사기 분무 예측 모델에서의 격자 의존성 연구)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.817-824
    • /
    • 2010
  • An improved spray model of a pressure-swirl atomizer was developed and the grid dependency of the model was investigated. Since the Lagrangian-Eulerian approach was adopted for tracking droplets, very small grids could not be used. However, in order to detect swirl flow accurately, small grids were needed because of the consideration of swirl injection. In order to overcome these limitations, numerical studies were performed by using various grids with cell sizes ranging from 10.0 $\times$ 10 mm to 0.625 $\times$ 0.625 mm. From these calculated results, it was observed that the most efficient grid cell size was 1.25 $\times$ 1.25 mm.