DOI QR코드

DOI QR Code

강판 종별 온도에 따른 산화 민감도 조사

Investigation of Oxidation Sensitivity with Temperature of Steel Plate Type

  • 김주한 (순천대학교 기계.우주항공공학부) ;
  • 이기만 (순천대학교 기계.우주항공공학부)
  • KIM, JUHAN (School of Mechanical and Aerospace Engineering, Sunchon National University) ;
  • LEE, KEEMAN (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 투고 : 2019.09.23
  • 심사 : 2019.10.31
  • 발행 : 2019.10.31

초록

Experiments were conducted to investigate the sensitivity of steel plate oxidation with temperature in a simulated furnace. Used steel plates were a general steel and a high tensile steel. Porous media burner (PM burner) used in model furnace was made for uniform temperature profile. The surrounding temperature was controlled by adjusting the flow rate of the mixture in the combustor. Oxide layer analysis was performed using SEM image analysis and EDS line scanning. Both steel sheets showed a tendency to increase the thickness of the steel sheet surface oxide layer as the temperature increases, and it was confirmed that the flaking phenomenon in surface oxidation layer appeared when the temperature was above a certain temperature.

키워드

참고문헌

  1. G. Erdem and Y. Taptik, "Effect of hot rolling conditions to produce deep drawing quality steels for continuous annealing process", Journal of Materials Processing Technology 170, 2005, 17-23, doi: https://doi.org/10.1016/j.jmatprotec.2005.04.097.
  2. T. C. Chen, C. H. Ho, J. C. Lin, and L. W. Wu, "3-D temperature and stress distributions of strip in preheating furnace of continuous annealing line", Applied Themal Engineering 30, 2010, 1047-1057, doi: https://doi.org/10.1016/j.applthermaleng.2010.01.018.
  3. S. Li, Q. Chen, and G. B. Huang, "Dynamic temperature modeling of continuous annealing furnace using GGAP-RBF neural network", Neurocomputing 69, 2006, 523-536, doi: https://doi.org/10.1016/j.neucom.2005.01.008.
  4. H. S. Park and K. J. Riu, "Effect of Combustion Characteristics of the Burners for Non Oxidizing Direct Fired Furnaces on the Oxidation of the Surface of Steel Plate", Mechanical Eng. Korea Society, Vol. 23, 1999, pp. 330-341, Retrieved from http://www.dbpia.co.kr/Article/NODE00343397.
  5. T. Takno and K. Sato, "An Excess Enthalpy Flame Theory", Combust. Sci. Tech, Vol. 20, 1979, pp. 73-84, doi: http://doi.org/10.1080/00102207908946898.
  6. J. R. Howell, M. J. Hall, and J. L. Ellzey, "Combustion of Hydrocarbon Fuels within Porous Inert Media", Prog. Energy Combust. Sci, Vol. 22, 1996, pp. 110-115, doi: http://doi.org/10.1016/0360-1285(96)00001-9.
  7. D. Huin, P. Plauder, and J. B. Leblond, "Oxidation of Metals", JSME Int. Jr., Series II, 2005, 64, pp. 131-133, doi: https://doi.org/10.1007/s11085-005-5718-x.
  8. F. J. Weinberg, "Combustion Temperatures: The Future?", NATURE, Vol 233, 1971, pp.239-241, doi: https://doi.org/10.1038/233239a0.
  9. F. Weinberg, "Heat-Recirculating Burners: Principles and Some Recent Developments", Combust. Sci. and Tech., 1996, Vol. 121. pp. 3-22, doi: https://doi.org/10.1080/00102209608935584.
  10. G. P. Gauthier, G. M.G. Watson, and J. M. Bergthorson, "Burning rates and temperatures of flames in excess-enthalpy burners: A numerical study of flame propagation in small heat-recirculating tubes, Combustion and Flame 161 (2014), pp. 2348-2360, doi: https://doi.org/10.1016/j.combustflame.2014.02.011.
  11. S. Zhengchang and L. Boquan, "Numerical sim ulation of excess-enthalpy combustion flame propagation of coal mine methane in ceramic foam", Mining Science and Technology (China) 20, 2010, pp. 248-253, doi: https://doi.org/10.1016/S1674-5264(09)60192-7.
  12. C. Keramiotis, B. Stelzner, D. Trimis, and Maria Founti, "Porous burners for low emission combustion : An experimental investigation", Energy 45, 2012, pp. 213-219, doi: https://doi.org/10.1016/j.energy.2011.12.006.
  13. C. J. Tseng, "Effects of hydrogen addition on methane combustion in a porous medium burner", International Journal of Hydrogen Energy 27, 2002, pp. 699-707, doi: https://doi.org/10.1016/S0360-3199(01)00173-2.
  14. N. Birks, G. H. Meier, and F. S. Pettit, "Introduction to the High Temperature Oxidation of Metals", Vol. 2, pp. 101-110, doi: https://doi.org/10.1017/CBO9781139163903.
  15. T. Nakamura, T. Matsumoto, H. Tada and K. Sugiura. "Chemistry of Nanomolecular Systems: Towards the Realization of Molecular Devices", ISIJ Int., 49, 4, 2009, pp. 564-573, doi: https://doi.org/10.1007/978-3-662-05250-1.
  16. S. G. Kim, K. J. Kang, and K. M. Lee, "A Study on Behavior of Steel Surface Oxidation with Characteristics of the Combustion", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 4, 2017, pp. 392-400, doi: https://doi.org/10.7316/KHNES.2017.28.4.392.
  17. S. G. Kim and K. M. Lee, "A Study on Behavior of Surface Oxidation with Steel Type", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 4, 2018, pp. 378-385, doi: https://doi.org/10.7316/KHNES.2018.29.4.378.
  18. M. L. Zheludkevich, A. G. Gusakov, A. G. Voropaev, A. A. Vecher, E. N. Kozyrski, and S. A. Raspopov, "Oxidation of Silver by Atomic Oxygen", Oxidation of Metals, Vol. 61, 2004, 39-48, doi: https://doi.org/10.1023/B:OXID.0000016275.96500.24.