Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
Transactions of the Korean Society of Mechanical Engineers B
/
v.31
no.5
/
pp.482-490
/
2007
When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.
The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve meters (12 m) depth of the reactor pool and cooled by the upward flow that the coolant enters the lower inlet of the plenum,. rises up through the grid plate and the core channel and comes out from the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by a jet flow. This paper describes an analytical analysis that is the study of the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the guide jet is suppressed under the top of the chimney after modifying the orifice diameter of 37.5 mm to 31 mm.
Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
Nuclear Engineering and Technology
/
v.54
no.1
/
pp.72-83
/
2022
This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.
An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.
Kim, Yoeng-Jae;Lee, Dae Keun;Kim, Seung Gon;Noh, Dong-Soon;Ko, Chang-Bog;Kim, Yongmo
한국연소학회:학술대회논문집
/
2015.12a
/
pp.157-159
/
2015
In this study, $CF_4$ decomposition was experimentally investigated in a high temperature flow reactor. Effects of temperature, reactant composition and concentration, and residence time on its decomposition into other stable species were analyzed. Then the results were compared to numerical results obtained using Chemkin Plug Flow Reactor model with Princeton Chemistry. As a preliminary result higher decomposition rate is obtained for higher reactor temperature and long residence time when proper reactants are supplied.
The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.
Park, Jong-Beom;Park, Jin-Ho;Hwang, Choong-Hwan;Kim, Soo-Hong
Proceedings of the KIEE Conference
/
2001.07d
/
pp.2166-2168
/
2001
Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics. The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed design of hardware diagnostic system reactor internal structures using neutron noise(RIDS).
Transactions of the Korean Society of Mechanical Engineers B
/
v.33
no.6
/
pp.418-426
/
2009
The effect of an inertia moment of a pump flywheel on the thermal-hydraulic behaviors of the KALIMER-600(Korea Advanced LIquid MEtal Reactor) reactor pool during an early-phase of a loss of normal heat sink accident was investigated. The thermal-hydraulic analyses for a steady and a transient state were made by using the COMMIX-1AR/P code. In the present analysis a quarter of the reactor geometry was modeled in a cylindrical coordinate system, which includes a quarter of a reactor core and a UIS, a half of a DHX and a pump and a full IHX. In order to evaluate the effects of an inertia moment of the pump flywheel, a coastdown flow whose flow halving time amounts to 3.69 seconds was supplied to a natural circulation flow in the reactor vessel. Thermal-hydraulic behaviors in the reactor vessel were compared to those without the flywheel equipment. The numerical results showed a good agreement with the design values in a steady state. It was found that the inertia moment contributes to an increase in the circulation flow rate during the first 40 seconds, however to a decrease of it there after. It was also found that the flow stagnant region induced by a core exit overcooling decelerated the flow rate. The appearance of the first-peak temperature was delayed by the flow coastdown during the initial stages after a reactor trip.
KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.
To investigate the behavior of reaction products with the reactor heights by the change of upflow velocity, a typical real height USAB reactor was built and experiment was conducted. The flow in the reactor by the upflow velocity was flug flow at low upflow velocity but the flow was completely mixed flow at high upflow velocity. Therefore, the concentration of pH, alkalinity and volatile acid was not so different with reactor heights at high upflow velocity. And comparing with low upflow velocity, the distribution of microorganisms with reactor heights did not show big different at high upflow velocity. The removal efficiency of organic compounds depended on the distribution of microorganisms and it was low at high upflow velocity. It is concluded that the operation of reactor with proper upflow velocity to improve contact with organic compounds and microorganisms is recommended.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.