• Title/Summary/Keyword: flow reactor

Search Result 1,620, Processing Time 0.028 seconds

Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere (수소 반응분위기에서 Chloroethylene 열분해 반응경로 특성)

  • Won, Yang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.510-515
    • /
    • 2011
  • The pyrolytic reaction of 1,1-dichloroethylene($CH_2CCl_2$) has been conducted to investigate thermal decomposition of chlorocarbon and product formation pathways under hydrogen reaction environment. The reactions were studied in a isothermal tubular flow reactor at 1 atm total pressure in the temperature range $650{\sim}900^{\circ}C$ with reaction times of 0.3~2.0 sec. A constant feed molar ratio $CH_2CCl_2:H_2$ of 4:96 was maintained through the whole experiments. Complete decay(99%) of the parent reagent, $CH_2CCl_2$ was observed at temperature near $825^{\circ}C$ with 1 sec. reaction time. The important decay of $CH_2CCl_2$ under hydrogen reaction environment resulted from H atom cyclic chain reaction by abstraction and addition displacement. The highest concentration (28%) of $CH_2CHCl$ as the primary product was observed at temperature $700^{\circ}C$, where up to 46% decay of $CH_2CCl_2$ was occurred. The secondary product, $C_2H_4$ as main product was detected at temperature above $775^{\circ}C$. The one less chlorinated ethylene than parent increase with temperature rise subsequently. The HCl and dechlorinated hydrocarbons such as $C_2H_4$, $C_2H_6$, $CH_4$ and $C_2H_2$ were the main products observed at above $825^{\circ}C$. The important decay of $CH_2CCl_2$ resulted from H atom cyclic chain reaction by abstraction and addition displacement. The important pyrolytic reaction pathways to describe the features of reagent decay and intermediate product distributions, based upon thermochemical and kinetic principles, were suggested.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF

Quantitative Analysis of Ergosterol as a Biomarker of Mold-contaminated Foods Using the Enzyme Biosensor (효소 바이오센서를 이용한 식품의 곰팡이 오염 지표물질인 Ergosterol 정량분석)

  • Kim, Mi-Kyeong;Kim, Jong-Won;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2009
  • Ergosterol is the significant component of the cell wall of fungi. Its presence is regarded as evidence of fungi contamination in grain and other foods. Many studies on ergosterol detection have been carried out using chemical methods, but those methods required complicated pre-treatments and long analysis times. In this study, an amperometric biosensor was developed for fast and precise ergosterol detection. The biosensor system used the electron transfer of hydrogen peroxide produced from the reaction of ergosterol with cholesterol oxidase. The biosensor system consisted of a peristaltic pump, a syringe loading sample injector, an enzyme reactor, a fabricated flow-through cell containing a working electrode, a reference electrode and a counter electrode, and a potentiostat/recorder. The working electrode was prepared by coating modified multi-wall carbon nanotube (MWNT) on glassy carbon electrode. The $MWNT-NH_2$ coated glassy carbon electrode linearly responded to hydrogen peroxide in the range of $1{\times}10^{-5}{\sim}8{\times}10^{-5}$ M with a detection limit of $10^{-7}$ M in the basic performance test. The currents produced from the ergosterol biosensor showed the linearity in a range from $1.0{\times}10^{-6}$ M to $1.0{\times}10^{-5}$ M ergosterol.

Development of Backup Calculation System for a Nuclear Steam Supply System Thermal-Hydraulic Model ARTS (Advanced Real-time Thermal Hydraulic Simulation) of the W/H Type NPP (W/H형 원전 시뮬레이터용 핵 증기공급 계통 열수력모델 ARTS(Advanced Real-time Thermal Hydraulic Simulation)의 보조계산체계 개발)

  • 서재승;전규동
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited compulsational capability at that time, they usually used very simplified physical models for a real-time simulation of NSSS thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called "negative training", especially for complicated two-phase flows in the reactor coolant system. In resolve the problem, KEPRI developed a realistic NSSS T/H program ARTS which was based on the RETRAN-3D code for the improvement of the Nuclear Power Plant full-scope simulator. The ARTS (based on the RETRAN-3D code) guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there is some possibility of failing to calculate in the case of large break loss of coolant accident (LBLOCA) and low-pressure low-flow transient. In this case, the backup calculation system cover automatically the ARTS. The backup calculation system was expected to provide substantially more accurate predictions in the analysis of the system transients involving LBLOCA. The results were reasonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with FSAR and the AMSI/ANS-3.5-1998 simulator software performance criteria.

The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge (배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향)

  • Lee Kwang-Sik;Yeo Yeong-Koo;Choi Jae-Wook;Lee Hwa-Ung;Song Hyung-Keun;Na Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.52-59
    • /
    • 2006
  • This paper examined the conversion of methane to hydrogen and other higher hydrocarbons using dielectric barrier discharge with AC pulse power. Two metal electrodes of a coaxial-type plasma reactor were separated by gas gap and an alumina tube. The inner electrode was located inside the alumina tube. The alumina tube was located inside the stainless steel tube, which was used as the outer electrode. Effect of feed gas composition (methane, oxygen, argon, water and helium), flow rate, applied frequency, input volt-age on methane conversion and product distribution were studied. The major products of plasma chemical reactions were ethylene, ethane, propane, buthane, hydrogen, carbon monoxide and carbon dioxide. The increment of applied voltage and the usage of inert gas as the background (helium and argon) enhanced the selectivity of hydrocarbons and methane conversion. The addition of water in the feed stream enhanced the conversion of methane and yield of hydrogen. Higher voltage leads to higher yield of $C_2H_6,\;C_3H_8,\;C_4H_{10}$ and yield or $C_2H_2\;and\;C_2H_4$ appeared highly in lower voltage.

The Roles of Lipid Supplements in Ethanol Production Using a Continuous Immobilized and Suspended Cell Bioreactor (연속식 고정화 및 현탁 세포 생물 반응기에 의한 에탄을 생성중 지질 첨가 영향)

  • Gil, Gwang-Hoon
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A one-stage, continuous-flow bioreactor with both immobilized and suspended cells was used to investigate the roles of lipid supplements in ethanol production by Saccharomyces cerevisiae. The reactor performance and the level of alcohol dehydrogenase(ADH) activities of the suspended cells, grown under various conditions, were measured. When ergosterol and/or oleic acid were added with surfactants to the yeast culture grown under non-aerated conditions, remarkable increases in ethanol production and cell growth was achieved, but specific ADH activities were not affected. Especially, no difference of specific ADH activities of the suspended cells grown under aerated and non-aerated condition was observed. The addition of the surfactant as a supplement also resulted in significant increases in ethanol production, cell growth, and specific ADH activity. When ergosterol and oleic acid were added to the yeast culture exposed to higher ethanol concentration($>40\;g/{\ell}$) level, ethanol production, cell growth, and specific ADH activity were increased, but the addition of surfactant was as effective as at lower ethanol concentration level. The results indicated that lipid supplements were more effective at higher ethanol concentration level than at lower ethanol concentration level during ethanol production. ADH isozyme patterns of the yeast cultures grown under various conditions on starch gel electrophoresis showed only one major band, probably ADH I. The migrating distance of the major isozyme, however, varied slightly according to the culture conditions of the cells. No apparent correlation was found between specific ADH activity and amount of ethanol produced. Cell mass was more important factor for ethanol production than specific ADH activity of the cells.

  • PDF

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

Study on Conversion of Carbon Dioxide to Methyl Alcohol over Ceramic Monolith Supported CuO and ZnO Catalysts (세라믹 모노리스에 담지된 CuO와 ZnO계 촉매에 의한 이산화탄소의 메탄올로의 전환에 관한 연구)

  • Park, Chul-Min;Ahn, Won-Ju;Jo, Woong-Kyu;Song, Jin-Hun;Kim, Ki-Joong;Jeong, Woon-Jo;Sohn, Bo-Kyun;Ahn, Byeong Kwon;Chung, Min-Chul;Park, Kwon-Pil;Ahn, Ho-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Methyl alcohol is one of the basic intermediates in the chemical industry and is also being used as a fuel additive and as a clean burning fuel. In this study, conversion of carbon dioxide to methyl alcohol was investigated using catalytic chemical methods. Ceramic monoliths (M) with $400cell/in^2$ were used as catalyst supports. Monolith-supported CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using ICP analysis, TEM images and XRD patterns. The catalytic activity for carbon dioxide hydrogenation to methyl alcohol was investigated using a flow-type reactor under various reaction temperature, pressure and contact time. In the preparation of monolith-supported CuO-ZnO catalysts by wash-coat method, proper concentration of precursors solution was 25.7% (w/v). The mixed crystal of CuO and ZnO was well supported on monolith. And it was known that more CuO component may be supported than ZnO component. Conversion of carbon dioxide was increased with increasing reaction temperature, but methyl alcohol selectivity was decreased. Optimum reaction temperature was about $250^{\circ}C$ under 20 atm because of the reverse water gas shift reaction. Maximum yield of methyl alcohol over CuO-ZnO/M catalyst was 5.1 mol% at $250^{\circ}C$ and 20 atm.

Characteristics of Metal-Phthalocyanine for Catalytic Combustion of Methanol (메탄올의 촉매연소에 대한 금속-프탈로시아닌의 특성)

  • Seo, Seong-Gyu;Yoon, Hyung-Sun;Lee, Sun-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1809-1816
    • /
    • 2000
  • The catalytic combustion of methanol as a model volatile organic compound(VOC) was been investigated over metal-phthalocyanine(PC) in a fixed bed flow reactor system. The catalytic activity of Co-PC pretreated with air and methanol mixture at $450^{\circ}C$ and 60 cc/min for 1 hr was very excellent. The order of catalytic activity on methanol combustion was summarized as follows: metal free-PC < Zn-PC < Fe-PC < Cu($\alpha$)-PC < Co-PC. By TG/DTA analysis, the tendency of thermal decomposition was increased as follows: metal free-PC < Zn-PC < Cu($\alpha$)-PC < Co-PC < Fe-PC. Under this pretreatment condition, the basic structures of Co-PC, Cu($\alpha$)-PC and Fe-PC were destroyed, and the new metal oxide such as $Co_3O_4$ from Co-PC was confirmed by EA and XRD analysis. But Zn-PC and metal free-PC were retained its basic structure under this pretreatment condition. On the combustion of methanol over Co-PC, HCHO and $HCOOCH_3$ were observed as an intermediate products in the high concentration of reactant or the short contact time(W/F).

  • PDF

A Study on Removal of NOx in Diesel Engine using Reductive Catalyst (환원촉매를 이용한 디젤엔진 배기가스 중 NOx 저감에 관한 연구)

  • Huang, H.Z.;Hwang, J.W.;Jung, J.Y.;Han, J.H.;Demidiouk, V.I.;Chae, J.O.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2255-2261
    • /
    • 2000
  • To eliminate $NO_x$ in diesel emission. selective catalyst reduction (SCR) was used in real diesel engine. Among the SCR methods, metal oxide and perovskite catalysts were introduced in this paper. The removal efficiencies with various major, promoter catalysts on ${\gamma}-Al_2O_3$ at different reaction temperature were investigated, and $LaCuMnO_x$ catalyst which has high removal efficiency at the temperature of real diesel exhaust gas was selected. $NO_x$ reduction was carried out over these catalysts in the flow-through type reactor using by-pass ($SV=3,300h^{-1}$). Under the given condition to this study, perovskite catalysts showed considerably high removal efficiency and $LaCuMnO_x$ was the best one among these catalysts in the temperature range of $150{\sim}450^{\circ}C$.

  • PDF