• Title/Summary/Keyword: flow pattern

Search Result 2,330, Processing Time 0.033 seconds

원관내 수직상향 2상유동에서 고분자물질이 유동양식에 미치는 영향 (The Effect of Flow Patterns with Polymer Additivies From Two Phase Flow at Vertical up Ward in Circular Tube)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.505-514
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure void fraction and channel geometry. We classify the flow pattern by measuring the output signal of the conductivity probe. under the classified flow pattern we mount a visualization equipment on the test section and take pictures. We vary the concentration of pure solvent and polymer to measure local void fraction. We know that the maximum point position of local void fraction distribution move from the center of the pipe to the wall of the pipe as JSL increase when JSA is constant in two phase flow. But we find that the maximum point position of local void friction move from the wal of the pipe to the center of the pipe when polymer concentration increase.

  • PDF

CDMA기반 전자부자 흐름 패턴 시스템 설계 및 구현 (A Design and Implementation of CDMA based Electronic Float Flow Pattern System)

  • 김동현;이채석;김종덕
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2619-2627
    • /
    • 2012
  • 전자 부자 흐름 패턴 시스템은 위치 측위 기술과 여러 가지 통신 기술을 이용하여 원격에서 부자의 위치를 모니터링 함으로써 하천의 유량을 예측할 수 있다. 현재 자연하천의 흐름 패턴을 분석하기 위해 여러 형태의 수동 부자들이 사용되고 있다. 수동 부자를 이용한 유량 측정은 유량을 측정하기위해 거리와 시간을 직접 측정한 후 이것을 이용한다. 이러한 방법은 측정방법과 정확한 유량 측정 측면에서 효율적이지 못하다. 이러한 문제를 극복하기 위해 본 연구진은 CDMA, GPS 그리고 2.4GHz기반의 RF모듈을 이용하여 전자부자를 설계 및 구현했다. 그리고 전자부자의 위치정보와 흐름 패턴 정보를 알기 위한 모니터링 시스템을 설계 및 구현하였다. 더불어 배터리로 동작하는 전자부자에서 짧은 life cycle은 전자부자를 이용한 흐름 패턴 시스템에서의 효용성을 떨어뜨린다. 이를 극복하기 위해 전자부자 흐름 패턴 시스템의 전자부자를 위한 전원 절약 기법을 설계하였다.

칩브레이커 형상변수에 의한 칩유동각 예측 (The Prediction of Chip Flow Angle on chip Breaker Shape Parameters)

  • 박승근
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.96-101
    • /
    • 2000
  • In machining with cutting tool inserts having complex chip groove shape the flow curl and breaking pattern of the chip are different than in flat-face inserts. In the present work an effort is made to understand the three basic phe-nomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the ini-tial chip flow the subsequent development of up and side curl and the final chip breaking due to the development of tor-sional and bending stresses. in this paper chip flow angle in a groove type and pattern type inserts. The expres-sion for chip flow angle in groove type and pattern type inserts is also verified experimentally using high speed filming techniques.

  • PDF

사각 마이크로채널 내의 2 상유동 압력강하와 유동양식에 대한 젖음성의 영향에 대한 연구 (Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel)

  • 최치웅;유동인;김무환
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.939-946
    • /
    • 2009
  • Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethyl-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of twophase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

점탄성유체의 압력측정용 벽공부근의 유동모양에 관한 실험적 연구 (An Experimental Study on the Flow Pattern in the Vicinity of Pressure Measuring Hole of the Viscoelasitc Fluids)

  • 김춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 1980
  • The fluid static pressure has been generally measured by means of a small hole leading to a measuring instrument. In case of viscoelastic fluids, however, it has been shown experimentally that a systematic error exists in measuring the static pressure by means of the small hole becuase viscoelasitc fluids have many properties that can not be observed in Newtonian fluids. In this paper, in order to examine the mechanism of the errors in measuring the static pressure of viscoelasitc fluids, flow patterns in the vicinity of static pressure measuring hole were photographically taken and observed graphically. The experiments to take photographs of flow patterns were performed by a parallel plate channel with the steady two-dimensional shear flow of viscoelastic fluids. Results of the experiment are classified as following three regions; (1) Arched symmetrical flow pattern region. (2) Asymmetrical flow pattern region. (3) Rectilinear symmetricl flow pattern region.

  • PDF

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

2단 패들 임펠러를 갖춘 구형교반조에서의 유동상태 (Flow Patterns in a Spherical Vessel with Double-Stage Paddle Impeller)

  • 이영세;이준만
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.263-269
    • /
    • 2007
  • A numerical algorithm for three-dimension laminar flow in an agitated vessel was established by using the spherical coordinates. Flow pattern for the double-stage paddle impeller was not dependent upon the distance of among the impeller in the agitated vessels. The numerical simulation of the flow pattern in spherical and cylindrical agitated vessel agree well with the visualization results.

  • PDF

형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석 (Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement)

  • 김기돈;양동열;정준호
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사 (Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques)

  • 정준호;양동렬
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.