• Title/Summary/Keyword: flow model of vortex

Search Result 583, Processing Time 0.027 seconds

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic precipitation, because strong vertical velocity and cloud bands are developed along isothermal deformation surface.

  • PDF

A Numerical Study on the Mechanism of Lee Vortex in the Lee of Large Scale Mountain

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1992
  • Understanding the nonlinear flow caused by orographic effects can be valuable in siting of new businesses, industries, and transportation facilities. In spite of recent work on large-amplitude waves and wave breaking, the studies of flow around large scale mountains have just begun. The generative mechanism of lee vortices in the lee of large scale mountain Is investigated by Ertel's theorem. The CSU RAMS is used as a numerical model. According to the numerical results, the isentropes are depressed behind the large scale mountains. This means the vortex lines must run upward and downward along the depression surface because vortex lines adhere to isentropic surfaces. Therefore, the vertically oriented vorticity can be formed in the lee of the large scale mountain. This vorticity plays an important role for orographic Precipitation, because strong vertical velocity and cloud bandy are developed along isothermal deformation surface.

  • PDF

Numerical Simulation of Turbulent Separated and Reattaching Flows by Local Forcing (국소교란에 의한 난류박리 재부착 유동의 수치해석)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.467-476
    • /
    • 2000
  • An unsteady numerical simulation was performed for locally-forced separated and reattaching flow over a backward-facing step. The local forcing was given to the separated and reattaching flow by means of a sinusoidally oscillating jet from a separation line. A version of the $k-{\varepsilon}-f_{\mu}$ model was employed, in which the near-wall behavior without reference to distance and the nonequilibrium effect in the recirculation region were incorporated. The Reynolds number based on the step height (H) was fixed at $Re_H=33000$, and the forcing frequency was varied in the range $0{\leq}St_H{\leq}2$. The predicted results were compared and validated with the experimental data of Chun and Sung. It was shown that the unsteady locally-forced separated and reattaching flows are predicted reasonably well with the $k-{\varepsilon}-f_{\mu}$ model. To characterize the large-scale vortex evolution due to the local forcing, numerical flow visualizations were carried out.

Propeller Wake Measurement of a Model Ship in Self Propulsion Condition using Towed Underwater PIV (입자영상유속계를 이용한 자항상태 모형선의 프로펠러 후류 계측)

  • Seo, Jeonghwa;Yoo, Geuk Sang;Lim, Tae Gu;Seol, Dong Myung;Han, Bum Woo;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.171-177
    • /
    • 2014
  • A two-dimensional particle image velocimetry (2D PIV) system in a towing tank is employed to measure a wake field of a very large crude oil carrier model with rotating propeller in self propulsion condition, to identify characteristics of wake of a propeller working behind a ship. Phase-averaged and time-averaged flow fields are measured for a horizontal plane. Scale ratio of the model ship is 1/100 and Froude number is 0.142. By phase-averaging technique, trajectories of tip vortex and hub vortex are identified and characteristic secondary vortex distribution is observed in the hub vortex region. Propeller wake on the starboard side is more accelerated than that on the port side, due to the difference of inflow of propeller blades. The hub vortex trajectory tends to face the port side. With the fluctuation part of the phase-averaged velocity field, turbulent kinetic energy (TKE) is also derived. In the center of tip vortex and hub vortex region, high TKE concentration is observed. In addition, a time-averaged vector field is also measured and compared with phase-averaged vector field.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Design and fundamental test on the cargo pump sump scaled model of tankers (탱크선 카고 펌프장 축소모델 설계 및 기초 실험)

  • Lee, Jo-Yeon;Kim, Seung-Jun;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The internal flow of a pump system that is installed in the interior of large vessels such as tankers is largely affected by the water level and flow conditions of the pump sump. However, the performance of the pump is generally evaluated with the consideration of only the performance of the pump itself, without considering the pumping station operating environment. Therefore, if the pump is affected by the incoming flow that exhibits vortex and swirl, the occurrence of vortex and swirl accompanied with air may cause problems with the pump sump. This effect of flow condition can lead to a decrease in efficiency, increase in vibration, and noise generation in the pump. In this study, to investigate the internal flow of the pump sump according to several water levels, a pump sump scale-model was designed and constructed. The frequency of vortex occurrence and the shape of the vortex were investigated according to the different water levels of a fundamental test. The Class C vortex type, which has a larger volume of air intake to the pump, was confirmed by the higher occurrence frequency at a relatively lower water level.

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

Topographic effects on tornado-like vortex

  • Nasir, Zoheb;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.123-136
    • /
    • 2018
  • The effects of steep and shallow hills on a stationary tornado-like vortex with a swirl ratio of 0.4 are simulated and quantified as Fractional Speed Up Ratios (FSUR) at three different locations of the vortex with respect to the crests of the hills. Steady state Reynolds Averaged Naiver Stokes (RANS) equations closed using Reynolds Stress Turbulence model are used to simulate stationary tornadoes. The tornado wind field obtained from the numerical simulations is first validated with previous experimental and numerical studies by comparing radial and tangential velocities, and ground static pressure. A modified fractional speed-up ratio (FSUR) evaluation technique, appropriate to the complexity of the tornadic flow, is then developed. The effects of the hill on the radial, tangential and vertical flow components are assessed. It is observed that the effect of the hill on the radial and vertical component of the flow is more pronounced, compared to the tangential component. Besides, the presence of the hill is also seen to relocate the center of tornadic flow. New FSUR values are produced for shallow and steep hills.

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF