• 제목/요약/키워드: flow model of vortex

검색결과 582건 처리시간 0.029초

모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구 (LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor)

  • 황철홍;이현용;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface

  • Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.655-667
    • /
    • 2017
  • The results of a numerical study on the performance of a propeller operating near a free surface are presented. The numerical simulations were performed for the various advance coefficients and the submergence depths of the model propeller. The effects of the model propeller size were investigated using two different model propeller sizes for all cases. The wave pattern of the free surface and the flow structure around the propeller as well as the hydrodynamic characteristics of the propeller were investigated through simulation results. The thrust and torque fluctuated and the trajectory of the tip vortex was distorted due to the interaction with the free surface. The wave pattern of the free surface was related to the tip vortex of the propeller. The decreases in thrust and torque at the small model propeller were greater than those of the large model propeller. The reduction rate of the thrust and torque increased with the advance coefficient.

이산와류법을 이용한 비정상 후류의 수치적 모사 (Numerical Simulations of Unsteady Wakes Using a Discrete Vortex Method)

  • 한철희;최근형;조진수
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.397-404
    • /
    • 2001
  • The behavior of unsteady wake vortices for the two-dimensional flat plate is simulated by a discrete vortex method. The flat plates and their wakes are represented by vortex sheets. The vortex sheets are replaced with discrete vortices. The freely deforming wake sheets are computed as a part of solution and the ground effect is included by a image method. In order to predict wake shapes accurately and to model closely coupled aerodynamic interference, a vortex core model and a vortex core addition scheme are used. The simulated wake shapes convecting behind the plates in unsteady motion are compared to a flow visualization result and other numerical results. The present results agree well with them. The present method is also applied to the aerodynamic analysis of flat plates in tandem configuration in ground effect.

Numerical Study on Vortex Structures in a Two-dimensional Bluff-Body Burner in the Transitional Flow Regime

  • Kawahara, Hideo;Nishimura, Tatsuo
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.31-36
    • /
    • 2002
  • Vortical structures are investigated numerically for both cold and combusting flows from a two-dimensional bluff-body burner in the transitional flow regime from steady to unsteady state. The Reynolds number of the central fuel flow is varied from 10 to 230 at a fixed air Reynolds number of 400. The flame sheet model of infinite chemical reaction and unit Lewis number are assumed in the simulation. The temperature dependence of the viscosity and diffusivity of the gas mixture is also considered. The vortex shedding is observed depending on the fuel flow. For cold flow, four different types of vortical structure are identified. However, for combusting flow of methane-air system the vortical structures change significantly due to a large amount of heat release during the combustion process, in contract to cold flow.

  • PDF

자유수면에 세워진 원주 주위의 유동특성을 이용한 자유표면 유속계의 개발 (Development of surface-flow velocimetry based on flow characteristics around a cylinder piercing a water free surface)

  • 김인철;조명종;김상준;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.607-612
    • /
    • 2001
  • Based on the flow characteristics around a piercing cylinder, a free surface-flow velocitmetry which can be used in extremely harsh environment such as molten steel flow was developed. The velocimetry is consisted of finite length cylinder, load detecting elastic plate, electric signal transducer and data acquisition H/W and S/W. Using such a velocimetry, two velocity measurement schemes were established which one is flow resistance detecting scheme and the other is Karman Vortex frequency detecting scheme. For calibration of each scheme, realistic flow water model was used and in followings, detailed calibration processes were explained.

  • PDF

축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구 (Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan)

  • 유서윤;정철웅;김종욱;박병일
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.103-111
    • /
    • 2024
  • 축류팬은 상대적으로 저압의 유동 영역에서 유동을 수송하기 위해 사용되며, 다양한 설계 변수에 대해 설계된다. 축류팬의 날개 끝 형상은 유동 및 소음 성능에 지배적인 역할을 수행하며 이에 대한 대표적인 유동 현상으로 날개 끝에서 발생하는 날개 끝 와류와 누설 와류가 있다. 이러한 3차원 유동 구조를 제어하기 위해 다양한 연구가 수행되어 왔으며, 항공기 분야에서 날개 끝 와류를 억제하고 효율을 증가시키기 위해 윙렛 형상이 개발되었다. 본 연구에서는 에어컨 실외기용 축류팬 날개에 적용된 윙렛 형상의 영향을 분석하기 위한 수치적, 실험적 연구를 수행하였다. 3차원 유동 구조 및 유동 소음을 수치적으로 분석하기 위해 unsteady Reynolds-Averaged Navier-Stokes(RANS) 방정식과 Ffocws-Williams and Hawkings(FW-H) 방정식을 전산유체역학 기법에 기초하여 수치 해석하였으며, 실험 결과와의 비교를 통해 수치 기법의 유효성을 검증하였다. 윙렛 형상에 따른 날개 끝 와류와 누설 와류의 형성의 차이를 3차원 유동장을 통해 비교하고, 그에 따른 공기역학적 성능을 정량적으로 비교하였다. 또한, 예측 유동장을 바탕으로 소음을 수치적으로 모사하여 윙렛 형상이 유동 소음 측면에 미치는 영향을 분석하였다. 대상 팬 모델의 시제품을 제작하여 유동 및 소음 실험을 실시하여 실제 성능을 정량적으로 평가하였다.

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

확대 및 유선곡률을 가진 디퓨저 흐름의 수치해석 (Numerical Analysis of a Diffuser Flow with Expansion and Streamline Curvature)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.595-608
    • /
    • 1998
  • A diffuser an important equipment to change kinetic energy into pressure energy has been studied for a long time. Though experimental and theoretical researches habe been done the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned various numerical studies have also been done. On the contrary many turbulence models have constraint to the applicability of diffuser-like flows with expansion and streamline curvature. In order to obtain the reliability of k-$\varepsilon$ turbulence model modified combination turbulence models composed of the anisotropic k-$\varepsilon$model modified combination turbulence models composed of the anisotropic k-$\varepsilon$ model with Hanjalic-Launder's preferential normal strain and Pope's vortex stretching mechanism are proposed. The results of the present proposed models prove the fact that the coefficient of pressure and the shear stress are well predicted at the diffuser flow.

  • PDF

원봉주위의 난류유동에 대한 수치해석 (Numerical Prediction of Turbulent Flow over a Circular Cylinder)

  • 박태선
    • 한국전산유체공학회지
    • /
    • 제7권1호
    • /
    • pp.20-27
    • /
    • 2002
  • Flow over a circular cylinder is studied numerically using a turbulence model. Based on the κ-ε-f/sub μ/ model of Park and Sung[6], a new damping function is used. The efficiency of the strain dependent damping function is addressed for vortex-shedding flows past a circular cylinder. The mean velocity and Reynolds stresses are compared with available experimental data at Re/sub D/= 3900. Also, the computational results for the Strouhal number are evaluated at several Reynolds number. The predictions by κ-ε-f/sub μ/ model are in good agreement with the experiments.

가시화기법을 이용한 룸 에어컨 내부의 유동 구조에 관한 연구 (Study on Flow Structure inside Room Air Conditioner Using Visualization Technique)

  • 이수홍;라선욱;강근;고한서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2713-2717
    • /
    • 2008
  • Whole flow fields of a room air conditioner (RAC) have been visualized by a Particle Image Velocimetry (PIV) technique to analyze the flow structure with various inlet and outlet angles, and to control an eccentric vortex which affects an efficiency and noise of the RAC. A test model with 5 stages of a cross flow fan has been manufactured and a transparent acryl has been installed at the side of the test model for the PIV experiment. The inlet and outlet flows and the flow inside the cross flow fan have been analyzed by varying the inlet grill angles and outlet blade angles. The movement of the eccentric vortex has been investigated experimentally by developing the measurement technique for the inner flow field of the cross flow fan. From the visualization of the inner flows, the origins of the noise inside the RAC and the condensation points around the outlet parts of the cold air have been observed and the solution of the problems can be proposed in this study.

  • PDF