• 제목/요약/키워드: flow learning

검색결과 759건 처리시간 0.032초

인공신경망을 통한 2D 용질성 마랑고니 유동 액적의 용질 농도 분포 역추적 기법 (Reverse tracking method for concentration distribution of solutes around 2D droplet of solutal Marangoni flow with artificial neural network)

  • 김준규;류준일;김형수
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.32-40
    • /
    • 2021
  • Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

딥러닝을 이용한 캠 열처리 공정 자동화에 관한 연구 (A Study on the Automation of Cam Heat Treatment Process using Deep Learning)

  • 최승욱
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.281-288
    • /
    • 2020
  • In this paper, we propose a control method to solve the surface hardness non-uniformity due to flow non-uniformity occurring in the heat treatment process of marine CAM. In the water cooling method including the decarbonization method, an automation device for deformation control has been developed and applied. LSTM was used to estimate the water cooling conditions, and the proposed method was found to be meaningful by improving the prototype results.

Design and Implementation of Teaching Simple Random Sampling by Using Constructivism and Information Technology

  • Han Beom Soo;Han Kyung Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.229-240
    • /
    • 2005
  • This study described the application of constructivism and information technology for teaching simple random sampling. We considered more student's participation, more interaction, and more flow in their introductory statistics class. In addition, we presented a web-based teaching and learning system for simple random sampling to demonstrate.

머신러닝 기법을 이용한 미계측지역에 적용가능한 지역화 Low-flow indices 산정 (Estimation of regional Low-flow Indices Applicable to Unmetered Areas Using Machine Learning Technique)

  • 정세진;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.39-39
    • /
    • 2020
  • Low-flow 하천에서의 최저수위를 나타내는 지표이다. 일반적으로 유황곡선의 갈수량(Q355)를 대표적으로 사용한다. Low-flow는 물 공급 관리 및 계획, 관개용수, 생태계등 다양한 분야에 영향을 미친다. 이러한 Low-flow를 산정하기 위해서는 충분한 기간의 유량자료가 필요하다. 하지만 국토의 70%가 산지지형으로 구성되어 있는 우리나라의 경우 국가하천과 1급하천을 제외한 산지유역은 수위관측소가 부재하거나 결측으로 인해 자료가 충분하지 않아 Low-flow분석에 한계가 있다. 이에 과거에는 미계측지역의 갈수량을 예측하기 위해서 다중회귀분석, ARIMA 모형 등 다양한 기법을 사용하였지만, 최근들어 머신러닝 모형의 수요가 증가하고 있다. 이에 본 연구에서는 새로운 패러다임에 맞는 머신러닝 기법인 DNN기법을 사용하고자 한다. DNN기법은 ANN기법의 단점인 학습과정에서 최적 매개변수값을 찾기 어렵고, 학습시간이 느린 단점을 보완한 방법이다. 따라서 본연구에서는 머신러닝 기법인 DNN기법을 통해 미계측지역에 적용 가능한 지역화 Low-flow indices를 산정하고자 한다. 먼저, Low-flow에 영향을 미치는 인자들을 수집하고 인자들간의 상관분석, 다중공선성 분석을 통해 통계적으로 유의한 변수를 선정하여, 머신러닝 모형에 입력자료를 구축하였다. 또한 기존의 갈수량 예측기법인 다중회귀분석 결과와 비교하여 머신러닝 기법의 효용성을 검토하였다.

  • PDF

메타버스의 가상환경과 텍스트 강화기법을 활용한 외국어 학습 효과 (The Effectiveness of Foreign Language Learning in Virtual Environments and with Textual Enhancement Techniques in the Metaverse)

  • 강정현;권슬희;정동훈
    • 지식경영연구
    • /
    • 제25권1호
    • /
    • pp.155-172
    • /
    • 2024
  • 이 연구의 목적은 가상환경에서의 다양한 환경 변화를 통한 외국어 학습 효과를 조사하는 것이다. 이를 위해 가상환경 공간을 교실과 식료품점으로 구분한 후, 여기에 각각 세 종류의 자막으로 구성된 텍스트 강화기법을 적용한 몰입형 가상현실 영어학습 콘텐츠를 직접 제작한 후 학습 효과를 비교했다. 실험은 2 × 3 혼합요인설계로 구성됐으며, 가상환경 공간은 실험자 내 요인으로 실험참여자는 학습 공간에 따라 처치 수준이 다른 두 개의 영상에 노출됐고, 텍스트 강화기법은 실험자 간 요인으로 실험참여자는 텍스트 강화기법에 따라 처치 수준이 다른 세 개의 자막 중 무작위로 한 개의 자막에 노출됐다. 가상환경 공간과 텍스트 강화기법에 따른 상호작용 효과 분석 결과, 프레즌스가 통계적으로 유의미한 차이를 보였다. 공간의 주효과를 살펴본 결과, 플로우와 학습 전-후 가상현실 교육 태도에 대해 통계적으로 유의미한 차이가 있었고, 텍스트 강화기법의 주효과를 분석한 결과, 플로우, 가상현실 학습 이용의도, 학습 만족도와 학습 자신감에서 통계적으로 유의미한 차이가 있었다. 결과적으로 가상현실 공간의 제공 환경에 따라 학습자의 교육에 대한 몰입과 태도 차이를 확인할 수 있었고, 자막 제공 방식에 따라 다양한 교육 효과의 차이가 있음을 확인할 수 있었다. 이는 가상환경에서 외국어 교육의 효과를 긍정적으로 확인한 것인데, 학교와 학원 등에서 가상환경을 활용한 영어학습 서비스의 가능성을 제시하고, 다양한 가상환경의 변화에 따라 교육 효과가 달라질 수 있다는 함의를 제공한다.

SW융합영재 담당교원 역량 강화를 위한 텐서플로우 기반 인공지능 교육 콘텐츠 개발 (Development of Artificial Intelligence Education Contents based on TensorFlow for Reinforcement of SW Convergence Gifted Teacher Competency)

  • 장은실;김재현
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.167-177
    • /
    • 2019
  • 미래사회에서의 국가 경쟁력 강화는 뛰어난 SW융합영재 발굴과 양성이다. 이러한 SW융합영재를 양성하기 위해서는 담당교원의 역량 강화가 선결되어야 할 것이다. 이를 위하여 본 논문에서는 SW융합영재 담당교원의 역량 강화를 위한 4차 산업혁명 시대의 핵심기술 중에 하나인 인공지능 교육 콘텐츠를 개발하였다. 인공지능 교육 콘텐츠의 방향을 설정 후, 인공지능 중에서도 중등 SW융합영재 교육에 적합한 교육 콘텐츠를 구성하여 상세 설계 및 개발하였다. 인공지능 교육 콘텐츠의 구성은 머신러닝과 텐서플로우의 이해, 수치 예측을 위한 선형 회귀 머신러닝 구현, 다중 선형 회귀 기반의 가격 예측 머신러닝 구현으로 이루어져 있다. 개발한 인공지능 교육 콘텐츠는 전문가에게 질적인 측면의 검증을 실시하였다. 향후 본 논문에서 제안한 인공지능 교육 콘텐츠는 SW융합영재 담당교원의 역량 강화에 도움을 줄 것으로 기대한다.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.57-64
    • /
    • 2021
  • 본 논문에서는 음성 명령을 인식하여 비행기의 1차 조종면을 제어할 수 있는 장치를 제안한다. 음성 명령어는 19개의 명령어로 구성되며 총 2,500개의 데이터셋을 근간으로 학습 모델을 구성한다. 학습 모델은 TensorFlow 기반의 Keras 모델의 Sequential 라이브러리를 이용하여 CNN 모델로 구성되며, 학습에 사용되는 음성 파일은 MFCC 알고리즘을 이용하여 특징을 추출한다. 특징을 인식하기 위한 2단계의 Convolution layer 와 분류를 위한 Fully Connected layer는 2개의 dense 층으로 구성하였다. 검증 데이터셋의 정확도는 98.4%이며 테스트 데이터셋의 성능평가에서는 97.6%의 정확도를 보였다. 또한, 라즈베리 파이 기반의 제어장치를 설계 및 구현하여 동작이 정상적으로 이루어짐을 확인하였다. 향후, 음성인식 자동 비행 및 항공정비 분야의 가상 훈련환경으로 활용될 수 있을 것이다.

심층강화학습 기반 서비스 그룹별 큐 관리 메커니즘 (A Queue Management Mechanism for Service groups based on Deep Reinforcement Learning)

  • 정설령;이성근
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1099-1104
    • /
    • 2020
  • 인터넷을 기반으로 다양한 종류의 응용 서비스들을 제공하기 위해서 각 흐름 별로 서비스 품질을 보장하는 것은 이상적이지만, 이를 실현하는 것은 매우 어려운 일이다. 서비스 품질 요구조건이 같거나 비슷한 여러 흐름들을 동일한 그룹으로 지정하고, 그룹별로 서비스 품질을 제공하는 방안이 효율적이다. 라우터에서 적용되는 큐 관리 메커니즘은 데이터의 효율적으로 전송하고, 서비스 별로 차별화된 서비스 품질을 지원하기 위하여 매우 중요한 역할을 수행한다. 다양한 멀티미디어 서비스를 효율적으로 지원하기 위해서 지능적이고 적응적인 큐 관리 메커니즘 기능이 필요하다. 본 논문은 일정 기간 유입되는 각 흐름 그룹의 트래픽 정보와 현재의 네트워크 상태 정보를 기반으로 그룹별 패킷의 전달 여부를 결정하는 심층강화학습 기반의 지능형 큐관리 메커니즘을 제안한다.

플로러닝기반 자연체험활동 프로그램 개발 (Development of the Program for Nature Experience Activity based on Flow-learning)

  • 백연주;이동엽
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.119-128
    • /
    • 2023
  • 본 연구는 플로러닝을 기반으로 자연에 대한 인식과 활동 방법을 익히고 느낄 수 있는 자연체험활동 프로그램을 개발하여 자연체험활동을 통한 대안적 수업 모델을 제시하기 위한 목적으로 수행되었다. 연구의 목적을 달성하기 위하여 자연과 만나기, 자연 탐구하기, 자연과 온몸으로 놀기, 자연에서 느낀 감동 나누기의 네 단계가 순환적으로 이루어지는 플로러닝 자연체험활동을 기저로 하여 ADDlE 교수설계 모형의 각 단계별 주요 절차를 바탕으로 자연체험활동 프로그램 개발하였다. 연구 과정을 통하여 자연체험활동 프로그램의 각 단계별 활동 및 유의사항에 대해 제시하였으며, 개발된 프로그램을 바탕으로 주요 교육적 시사점을 논의하였다. 연구를 통해 개발된 자연체험활동 프로그램은 교사에게 자연체험활동 방법에 대한 인식의 전환과 더불어 자연체험활동에 대한 기본적인 방향을 제시할 수 있고, 유아는 자연체험활동 프로그램을 통하여 자연을 자유롭게 느끼고 경험하며 스스로 지식을 구성하는 학습자가 될 수 있을 것으로 기대한다.