Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.
International journal of advanced smart convergence
/
제12권4호
/
pp.88-97
/
2023
Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.
In this paper, we propose a control method to solve the surface hardness non-uniformity due to flow non-uniformity occurring in the heat treatment process of marine CAM. In the water cooling method including the decarbonization method, an automation device for deformation control has been developed and applied. LSTM was used to estimate the water cooling conditions, and the proposed method was found to be meaningful by improving the prototype results.
Communications for Statistical Applications and Methods
/
제12권1호
/
pp.229-240
/
2005
This study described the application of constructivism and information technology for teaching simple random sampling. We considered more student's participation, more interaction, and more flow in their introductory statistics class. In addition, we presented a web-based teaching and learning system for simple random sampling to demonstrate.
Low-flow 하천에서의 최저수위를 나타내는 지표이다. 일반적으로 유황곡선의 갈수량(Q355)를 대표적으로 사용한다. Low-flow는 물 공급 관리 및 계획, 관개용수, 생태계등 다양한 분야에 영향을 미친다. 이러한 Low-flow를 산정하기 위해서는 충분한 기간의 유량자료가 필요하다. 하지만 국토의 70%가 산지지형으로 구성되어 있는 우리나라의 경우 국가하천과 1급하천을 제외한 산지유역은 수위관측소가 부재하거나 결측으로 인해 자료가 충분하지 않아 Low-flow분석에 한계가 있다. 이에 과거에는 미계측지역의 갈수량을 예측하기 위해서 다중회귀분석, ARIMA 모형 등 다양한 기법을 사용하였지만, 최근들어 머신러닝 모형의 수요가 증가하고 있다. 이에 본 연구에서는 새로운 패러다임에 맞는 머신러닝 기법인 DNN기법을 사용하고자 한다. DNN기법은 ANN기법의 단점인 학습과정에서 최적 매개변수값을 찾기 어렵고, 학습시간이 느린 단점을 보완한 방법이다. 따라서 본연구에서는 머신러닝 기법인 DNN기법을 통해 미계측지역에 적용 가능한 지역화 Low-flow indices를 산정하고자 한다. 먼저, Low-flow에 영향을 미치는 인자들을 수집하고 인자들간의 상관분석, 다중공선성 분석을 통해 통계적으로 유의한 변수를 선정하여, 머신러닝 모형에 입력자료를 구축하였다. 또한 기존의 갈수량 예측기법인 다중회귀분석 결과와 비교하여 머신러닝 기법의 효용성을 검토하였다.
이 연구의 목적은 가상환경에서의 다양한 환경 변화를 통한 외국어 학습 효과를 조사하는 것이다. 이를 위해 가상환경 공간을 교실과 식료품점으로 구분한 후, 여기에 각각 세 종류의 자막으로 구성된 텍스트 강화기법을 적용한 몰입형 가상현실 영어학습 콘텐츠를 직접 제작한 후 학습 효과를 비교했다. 실험은 2 × 3 혼합요인설계로 구성됐으며, 가상환경 공간은 실험자 내 요인으로 실험참여자는 학습 공간에 따라 처치 수준이 다른 두 개의 영상에 노출됐고, 텍스트 강화기법은 실험자 간 요인으로 실험참여자는 텍스트 강화기법에 따라 처치 수준이 다른 세 개의 자막 중 무작위로 한 개의 자막에 노출됐다. 가상환경 공간과 텍스트 강화기법에 따른 상호작용 효과 분석 결과, 프레즌스가 통계적으로 유의미한 차이를 보였다. 공간의 주효과를 살펴본 결과, 플로우와 학습 전-후 가상현실 교육 태도에 대해 통계적으로 유의미한 차이가 있었고, 텍스트 강화기법의 주효과를 분석한 결과, 플로우, 가상현실 학습 이용의도, 학습 만족도와 학습 자신감에서 통계적으로 유의미한 차이가 있었다. 결과적으로 가상현실 공간의 제공 환경에 따라 학습자의 교육에 대한 몰입과 태도 차이를 확인할 수 있었고, 자막 제공 방식에 따라 다양한 교육 효과의 차이가 있음을 확인할 수 있었다. 이는 가상환경에서 외국어 교육의 효과를 긍정적으로 확인한 것인데, 학교와 학원 등에서 가상환경을 활용한 영어학습 서비스의 가능성을 제시하고, 다양한 가상환경의 변화에 따라 교육 효과가 달라질 수 있다는 함의를 제공한다.
미래사회에서의 국가 경쟁력 강화는 뛰어난 SW융합영재 발굴과 양성이다. 이러한 SW융합영재를 양성하기 위해서는 담당교원의 역량 강화가 선결되어야 할 것이다. 이를 위하여 본 논문에서는 SW융합영재 담당교원의 역량 강화를 위한 4차 산업혁명 시대의 핵심기술 중에 하나인 인공지능 교육 콘텐츠를 개발하였다. 인공지능 교육 콘텐츠의 방향을 설정 후, 인공지능 중에서도 중등 SW융합영재 교육에 적합한 교육 콘텐츠를 구성하여 상세 설계 및 개발하였다. 인공지능 교육 콘텐츠의 구성은 머신러닝과 텐서플로우의 이해, 수치 예측을 위한 선형 회귀 머신러닝 구현, 다중 선형 회귀 기반의 가격 예측 머신러닝 구현으로 이루어져 있다. 개발한 인공지능 교육 콘텐츠는 전문가에게 질적인 측면의 검증을 실시하였다. 향후 본 논문에서 제안한 인공지능 교육 콘텐츠는 SW융합영재 담당교원의 역량 강화에 도움을 줄 것으로 기대한다.
본 논문에서는 음성 명령을 인식하여 비행기의 1차 조종면을 제어할 수 있는 장치를 제안한다. 음성 명령어는 19개의 명령어로 구성되며 총 2,500개의 데이터셋을 근간으로 학습 모델을 구성한다. 학습 모델은 TensorFlow 기반의 Keras 모델의 Sequential 라이브러리를 이용하여 CNN 모델로 구성되며, 학습에 사용되는 음성 파일은 MFCC 알고리즘을 이용하여 특징을 추출한다. 특징을 인식하기 위한 2단계의 Convolution layer 와 분류를 위한 Fully Connected layer는 2개의 dense 층으로 구성하였다. 검증 데이터셋의 정확도는 98.4%이며 테스트 데이터셋의 성능평가에서는 97.6%의 정확도를 보였다. 또한, 라즈베리 파이 기반의 제어장치를 설계 및 구현하여 동작이 정상적으로 이루어짐을 확인하였다. 향후, 음성인식 자동 비행 및 항공정비 분야의 가상 훈련환경으로 활용될 수 있을 것이다.
인터넷을 기반으로 다양한 종류의 응용 서비스들을 제공하기 위해서 각 흐름 별로 서비스 품질을 보장하는 것은 이상적이지만, 이를 실현하는 것은 매우 어려운 일이다. 서비스 품질 요구조건이 같거나 비슷한 여러 흐름들을 동일한 그룹으로 지정하고, 그룹별로 서비스 품질을 제공하는 방안이 효율적이다. 라우터에서 적용되는 큐 관리 메커니즘은 데이터의 효율적으로 전송하고, 서비스 별로 차별화된 서비스 품질을 지원하기 위하여 매우 중요한 역할을 수행한다. 다양한 멀티미디어 서비스를 효율적으로 지원하기 위해서 지능적이고 적응적인 큐 관리 메커니즘 기능이 필요하다. 본 논문은 일정 기간 유입되는 각 흐름 그룹의 트래픽 정보와 현재의 네트워크 상태 정보를 기반으로 그룹별 패킷의 전달 여부를 결정하는 심층강화학습 기반의 지능형 큐관리 메커니즘을 제안한다.
본 연구는 플로러닝을 기반으로 자연에 대한 인식과 활동 방법을 익히고 느낄 수 있는 자연체험활동 프로그램을 개발하여 자연체험활동을 통한 대안적 수업 모델을 제시하기 위한 목적으로 수행되었다. 연구의 목적을 달성하기 위하여 자연과 만나기, 자연 탐구하기, 자연과 온몸으로 놀기, 자연에서 느낀 감동 나누기의 네 단계가 순환적으로 이루어지는 플로러닝 자연체험활동을 기저로 하여 ADDlE 교수설계 모형의 각 단계별 주요 절차를 바탕으로 자연체험활동 프로그램 개발하였다. 연구 과정을 통하여 자연체험활동 프로그램의 각 단계별 활동 및 유의사항에 대해 제시하였으며, 개발된 프로그램을 바탕으로 주요 교육적 시사점을 논의하였다. 연구를 통해 개발된 자연체험활동 프로그램은 교사에게 자연체험활동 방법에 대한 인식의 전환과 더불어 자연체험활동에 대한 기본적인 방향을 제시할 수 있고, 유아는 자연체험활동 프로그램을 통하여 자연을 자유롭게 느끼고 경험하며 스스로 지식을 구성하는 학습자가 될 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.