• 제목/요약/키워드: flow instability

검색결과 762건 처리시간 0.028초

수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석 (Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection)

  • 원수희;정인석;최정열
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석 (Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection)

  • 원수희;정인석;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.79-85
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

층류제트유동 불안정성에 미치는 교류 전기장 효과 (Effect of AC Electric Fields on Flow Instability in Laminar Jets)

  • 김경택;이원준;차민석;박정;정석호;권오붕;김민국;이상민
    • 한국연소학회지
    • /
    • 제21권3호
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.

층류확산화염의 불안정성에 대한 매연생성 특성의 역할 (Soot Formation Characteristics on the Instability of Laminar Diffusion Flames)

  • 남연우;이원남
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

예선회가 존재하는 회전유동장의 불안정성 수치해석 (Numerical Instability Analysis of the Rotating Boundary-Layer flow Including Pre-Swirl)

  • 황영규;이윤용;이광원
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.415-423
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for these flows; Ro = -1, -0.5, and 0, using linear stability theory. Detailed numerical values of the disturbance wave number. wave frequency. azimuth angle. radius (Reynolds number, Re) and other characteristics have been calculated for the pre-swirl flows. On the basis of Ekman and Karman boundary layer theory, the instability of the pre-swirl flows have been investigated for the unstable criteria. The disturbance will be relatively fast amplified at small fe and within wide bands of wave number compared with previously known Karman boundary-layer results. The flow (Ro =-0.5) is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.9. It has a larger range of unstable interval than Karman boundary layer and can be unstable at smaller Re.

A SIMPLE ANALYTICAL METHOD FOR NONLINEAR DENSITY WAVE TWO-PHASE INSTABILITY IN A SODIUM-HEATED AND HELICALLY COILED STEAM GENERATOR

  • Kim, Seong-O;Choi, Seok-Ki;Kang, Han-Ok
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.841-848
    • /
    • 2009
  • A simple model to analyze non-linear density-wave instability in a sodium-cooled helically coiled steam generator is developed. The model is formulated with three regions with moving boundaries. The homogeneous equilibrium flow model is used for the two-phase region and the shell-side energy conservation is also considered for the heat flux variation in each region. The proposed model is applied to the analysis of two-phase instability in a JAEA (Japan Atomic Energy Agency) 50MWt No.2 steam generator. The steady state results show that the proposed model accurately predicts the six cases of operating temperatures on the primary and secondary sides. The sizes of three regions, the secondary side pressure drop according to the flow rate, and the temperature variation in the vertical direction are also predicted well. The temporal variations of the inlet flow rate according to the throttling coefficient, the boiling and superheating boundaries and the pressure drop in the two-phase and superheating regions are obtained from the unsteady analysis.

원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가 (Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape)

  • 조성휘;김홍집;이명희
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향 (Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket)

  • 김정은;이설하;김지은;김지혜;유민정;한송이;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.672-674
    • /
    • 2017
  • 하이브리드 로켓의 연소 실험 과정에서 저 주파수 대역이 증폭하는 연소 불안정이 관찰되었다. 반면, 터빈 연소기에서는 혼합 특성 향상을 통하여 연소의 안정성을 얻기 위해 스월 유동을 사용한다. 본 연구에서는 하이브리드 로켓의 연소 불안정을 감소시키기 위하여 스월 인젝터를 사용하여 실험하였다. 그 결과, 하이브리드 로켓에서 스월 인젝터를 통하여 산화제를 주입한 경우 연소 불안정이 감소하였다. 산화제의 스월 유동의 변화는 연소실 내부의 난류유동 특성을 변화시키며 그 결과, 연소 불안정에 영향을 미친다. 따라서 스월 각도 변화를 통하여 스월 넘버 변화를 변화시킴으로써 유동 특성 변화에 대해 알아보았다. 유동 특성 변화가 주파수 특성에 미치는 영향, 압력진동과 연소진동의 상관관계에 대해 확인하였다.

  • PDF

$16{\times}16$ 개량핵연료 연료봉의 수력적 안정성에 관한 연구 (A Study on the Hydraulic Stability of Fuel Rod for the Advanced $16{\times}16$ Fuel Assembly Design)

  • 전상윤
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.347-360
    • /
    • 2005
  • 경수로 원자로 하부구조물에서 발생되는 유포의 불균일성에 기인하는 교차류와 핵연료집합체의 수력저항의 차이에 의해 발생하는 교차류, 그리고 축류 등에 의해 유발되는 연료봉의 불안정성은 핵연료손상의 원인이 될 수 있으므로, 새로운 연료 개발 시 연료봉에 대한 진동 및 안정성 해석을 수행하여 연료봉 진동과 불안정성 발생 여부를 확인하고 있다. 본 연구에서는 새로 개발된 고리 2호기용 $16{\times}16$형 개량핵연료 집합체에 대한 연료봉의 진동 및 안정성 해석을 수행하여 지지격자 높이와 위치, 그리고 지지조건 등이 연료봉의 진동특성 및 안정성에 미치는 영향을 평가하였다 그리고 해석결과에 근거하여 개량연료 집합체에서 중간지지격자 높이와 각 지지격자의 위치를 제안하였다.

ASYMPTOTIC SOLUTIONS OF HYDRODYNAMIC INTERFACIAL INSTABILITIES IN CYLINDRICAL FLOW

  • Sohn, Sung-Ik
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권4호
    • /
    • pp.259-267
    • /
    • 2013
  • We present a high-order potential flow model for the motion of hydrodynamic unstable interfaces in cylindrical geometry. The asymptotic solutions of the bubbles in the gravity-induced instability and the shock-induced instability are obtained from the high-order model. We show that the model gives significant high-order corrections for the solution of the bubble.