• Title/Summary/Keyword: flow instabilities

Search Result 128, Processing Time 0.024 seconds

A Study on Buckling and plastic Instable Flow with Kinematic Hardening (이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구)

  • 황두순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

Flow Noise in the Outdoor Unit of an Air-conditioner (에어컨 실외기에서의 유동소음)

  • 이승배;이재환;김휘중;최진규;진성훈;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.594-601
    • /
    • 1997
  • Propeller fans are commonly equipped in outdoor units of air-conditioners to provide effective cooling in a dried heat exchanger. A new design technique was developed to satisfy requirements of aerodynamic and aeroacoustic performance, which employs the intersection method of two cylinders for mean camber line. Three proto-types of propeller fan including Palm-Shaped, Highly-Swept(PSHS) fan (proto 3)were not only to provide low lift forces for dipole sound, but also to reduce the organized tip vortices interacting with the fan guide causing narrow-banded rotating instabilities. Cross-correlation technique was applied to study flow noise source characteristics for three proto-type fans designed. The cross-correlations between a microphone at far field and a hot-wire sensor at near field show that flows near hub region of proto 3 fan are less organized and the flow structures especially at high flow rate coefficients for proto 3 fan are less correlated with noise generated than other proto-types fans.

  • PDF

A Development of A Gas Mechanical Pulsator (압력 섭동 장치 설계/제작 및 검증시험)

  • Kim, Tae-Woan;Hwang, Oh-Sik;Ko, Young-Sung;Jung, Se-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2009
  • A gas mechanical pulsator is developed for the study of combustion instabilities in various combustors such as LRE combustor. First, it shows that the mass flow rates and the perturbation frequencies can be successively controlled by the inlet pressure and the rotating speed of a rotating disk with many holes. Second, the device is used as an acoustic amplification source as a substitute for the speaker in the previous acoustic tests and its results show almost the same resonant frequency and damping characteristics compared with the previous results. In conclusion, the result shows that it can be used as a substitute for a speaker in the studies of LRE combustion instabilities, which has a flow and no limitation of amplification, and a device for making a perturbation source in gas flow.

Rheological Properties and Roll Coating Dynamics of Basecoats for Precoated Automotive Metal Sheets (자동차 선도장 강판용 베이스코트의 유변학적 특성 및 롤코팅 동적 거동)

  • Lee, Dong Geun;Hwang, Ji Won;Kim, Kyung Nam;Noh, Seung Man;Jung, Hyun Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this study, rheological properties and flow dynamics in roll coating process of basecoat paints have been investigated for automotive precoated metal (PCM) sheet applications. Various rheological properties for basecoats with three colors (black, blue, and silver), such as shear viscosity data at room temperature and elastic/viscous moduli under thermal curing condition, have been measured using a rotational rheometer. It is found that the relative portion of function groups inside basecoats and their viscosity level have greatly affected the formation of crosslinked networks by thermal curing. Also, operability coating windows for basecoats have been established in three-roll coating process system by observing their flow instabilities such as ribbing and cascade. It is confirmed that rheological approaches applied in this study have been usefully applied to develop environmentally-friendly PCM coating technology and optimally control the coating operations for non-Newtonian PCM paints.

Rotordynamic Instabilities Caused by the Fluid Force Moments on the Backshroud of a Francis Turbine Runner

  • Song, Bingwei;Horiguchi, Hironori;Ma, Zhenyue;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Severe flexural vibration of the rotor shaft of a Francis turbine runner was experienced in the past. It was shown that the vibration was caused by the fluid forces and moments on the backshroud of the runner associated with the leakage flow through the back chamber. The aim of the present paper is to study the self-excited rotor vibration caused by the fluid force moments on the backshroud of a Francis turbine runner. The rotor vibration includes two fundamental motions, one is a whirling motion which only has a linear displacement and the other is a precession motion which only has an angular displacement. Accordingly, two types of fluid force moment are exerted on the rotor, the moment due to whirl and the moment due to precession. The main focus of the present paper is to clarify the contribution of each moment to the self-excited vibration of an overhung rotor. The runner was modeled by a disk and the whirl and the precession moments on the backshroud of the runner caused by the leakage flow were evaluated from the results of model tests conducted before. A lumped parameter model of a cantilevered rotor was used for the vibration analysis. By examining the frequency, the damping rate, the amplitude ratio of lateral and angular displacements for the cases with longer and shorter overhung rotor, it was found that the precession moment is more important for smaller overhung rotors and the whirl moment is more important for larger overhung rotors, although both types of moment due to the leakage flow can cause self-excited vibration of an overhung rotor.

A Experimental Study on the Instability of Combustion in a Dump Combustor with Respect to Fuel and Air Mixing and Flow Conditions (혼합기 공급방식에 따른 덤프연소기의 연소 불안정성에 관한 실험적 연구)

  • Hong, Jung-Goo;Lee, Min-Chul;Lee, Uen-Do;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.963-970
    • /
    • 2005
  • The combustion instability of turbulent flames is the most important problem of the gas turbine combustor. Thus improved understanding of mechanisms of combustion instability is necessary for the design and operation of gas turbine combustors. In this study, the cause of the combustion instability in a rearward-step dump combustor was investigated with respect to the fuel flow modulation; choked fuel flow, unchoked fuel flow and fully premixed mixture flow. We observed various types of combustion instabilities with respect to the change of equivalence ratio, fuel flow conditions and fuel injection location. Particularly in the unchoked fuel flow condition, it was found that the oscillation time of combustion instability is strongly related to the convection time of the fuel and that the pressure fluctuation in a lab-scale combustor is highly related to the vortex and the equivalence ratio fluctuations due to fuel flow modulation and unmixedness of the fuel and air.

Added Mass, Viscous Damping and Fluid-stiffness Coefficients on the Rotating Inner Cylinder in Concentric Annulus (동심환내의 회전체 진동에 의한 부가질량, 유체감쇠계수 및 유체탄성계수에 관한 연구)

  • 심우건;박진호;김기선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.695-701
    • /
    • 2001
  • While a rotating inner cylinder executes a periodic translational motion in concentric annulus, the vibration of the rotating inner cylinder is induced by fluid-dynamic forces acting on the cylinder. In the previous study related to journal bearing, the unsteady viscous flow in the annulus and the fluid-dynamic forces were evaluated based on a numerical approach. Considering the dynamic-characteristics of unsteady viscous flow, an approximate analytical method has been developed for estimating added mass, viscous damping and fluid-stiffness coefficients. For the study of flow-induced vibrations and related instabilities, it is of interest to separate the coefficients from the fluid-dynamic forces. The added-mass and viscous damping coefficients for very narrow annular configurations, as journal bearing. can be approximated by considering the gap ratio to the radius of inner cylinder, while the fluid-stiffness coefficient is related to the Reynolds number, the oscillatory Reynolds number and the gap ratio.

  • PDF

Flow Noise Source of Rotating Cylinder in a Cavity Structure (공동구조내 회전하는 실린더의 유동소음원 해석)

  • Park, Kye-Chan;Lee, Seungbae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.629-634
    • /
    • 2004
  • Cavities are inevitable structures in automobile configuration. The flow-induced noise is generated from the wheel housing section by the interaction between a rotating wheel and the unsteady flows in the cavity. In this research the wheel housing was assumed by a rectangular cavity for simplification. We measured the radiated sound from the 2-D cavity without cylinder and from the rotating cylinder in the cavity by using the sound source localization method with an acoustic mirror system. In the 2-D cavity case of low Mach number(Ma=0.029), the sound sources were found to be located near the leading edge of cavity due to the shear layer instabilities. Comparing the cases of the rotating and the non-rotating cylinder, it is observed that the sound Pressure levels around the rotating cylinder in the cavity increased and the main acoustic sources were located at the rear section of the rotating wheel.

  • PDF

An Effect of Pressure Fluctuations of a Combustion Chamber on the Modulation of Equivalence Ratio in the Channel of the Burner (연소실 압력 변동이 버너내부의 당량비 변조에 미치는 영향)

  • Hong, Jung-Goo;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.202-207
    • /
    • 2007
  • In order to understand the phenomena of combustion instability, an experimental study was conducted at the moderate pressure and ambient temperature conditions. The flame behavior and the pressure fluctuations were measured in a dump combustor. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The fluctuation of pressure, heat release and equivalence ratio were measured by piezoelectric pressure sensor, high speed Intensified Charge Coupled Device (HICCD) camera and gas chromatography respectively. Two representative modes were self-excited pressure oscillations at the resonance of combustion chamber (200Hz) and instabilities related to the modulated fuel flow rate through the fuel holes (10Hz). It is found that, especially in an unchoked fuel flow condition, the modulation of the fuel flow rate affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.

Linear Stability Analysis of the Reacting Shear Flow

  • Na Yang;Lee Seung-Bae;Shin Dong-Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1309-1320
    • /
    • 2006
  • The linear instability of reacting shear flow is analyzed with special emphasis on the effects of the heat release and variable transport properties. Both analytic profiles and laminar solutions of the boundary-layer equations are used as base flows. The growth rates of the instabilities are sensitive to the laminar profiles, differing by more than a factor of 2 according to which profile is used. Thus, it is important to base the analysis on accurate laminar profiles. Accounting for variable transport properties also changes the mean profiles considerably, and so including them in the computation of the laminar profiles is equally important. At larger heat release, two modes that are stronger in the outer part of the shear layer have the highest growth rates; they also have shorter wavelengths than the center mode.