• 제목/요약/키워드: flow injection

검색결과 2,130건 처리시간 0.025초

고압 분사노즐의 최적형상에 관한 연구 (A Study on the Optimum Shape of High-Pressure Injection Nozzle)

  • 이종선;김형철
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.37-43
    • /
    • 2003
  • This study makes to flow analysis of computational fluid dynamics(CFD) according to the basic theory of turbulent flow regarding high-pressure injection nozzle. It also makes structural analysis to find out the structural validity of the optimum shape of high-pressure injection nozzle. It divides to two areas such as plunger areas and high-pressure injection nozzle area including plunger.

Effects of Piston Shapes and Intake Flow on the Behavior of Fuel Mixtures in a GDI Engine

  • Kang, Jeong-Jung;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2027-2033
    • /
    • 2003
  • The purpose of this study is to investigate the stratification of fuel vapor with different in-cylinder flow, piston cavity and injection timings in an optically accessible engine. Three different piston shapes that are F(Flat), B(Bowl) and R(Re-entrance) types were used. The images of liquid and vapor fuel were captured under the motoring condition using Laser Induced Exciplex Fluorescence technique. As a result, at early injection timing of 270 BTDC, liquid fuel was evaporated faster by tumble flow than swirl flow, where most of fuel vapor were transported by tumble flow to the lower region and both sides of cylinder for the F-type piston. At late injection timing of 90 BTDC, tumble flow appears to be moving the fuel vapor to the intake side of the cylinder, while swirl flow convects the fuel vapor to the exhaust side. The concentration of mixture in the center region was highest in the B-type piston, while fuel vapor was transported to the exhaust side by swirl flow in F and R-type pistons. At the injection timing of 60 BTDC, the R-type piston was better for stratification due to a relatively smaller bowl diameter than the others.

DME 커먼레일 시스템을 위한 인젝터 분사 유량 개선 (Injection Flow Rate Improvement of Injectors for DME Common-rail Systems)

  • 이기수;신석신;박종호
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, injection flow rates and material of the solenoid sealing of the injectors were improved for the development of a di-methyl Ether(DME) common-rail system. To deliver the same amount of energy provided by injection pressure of diesel $P_{inj}$ = 160 MPa, the DME injectors need to have larger diameter of nozzle hole and more No. of hole at low injection pressure of $P_{inj}$ = 40~50 MPa. The simplified nozzle flow model, which takes account of nozzle geometry and injection condition, was employed in order to design the concept of a injector nozzle such as No. of hole, diameter of hole and diameter of needle seat, etc. Injection amount and rate were tested by diesel and DME test stand. As a result, the diameter of nozzle hole were enlarged by 0.25 mm. The diameter of the orifice in the high pressure line was increased by 1.0 mm to maintain hydraulic force in the nozzle. The material of the solenoid sealing was changed to HNBR, which was strong against the corrosive. Experimental results showed that the injection amount of the DME injector drastically increased by 191.9% comparison to that of diesel at $P_{inj}$ = 40 MPa.

다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰 (Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts)

  • 강민아;김영경;김준민;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

자동 IV 주사 유량 자동 제어 및 네트워크 모니터링 (Automatic Flow Control and Network Monitoring of IV Injection)

  • 김진남;권원태;이강희
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.161-166
    • /
    • 2012
  • Intravenous (IV) injection is widely used to supply Ringer solution directly into a vein in hospital. Generally, a passive injection method has been used, which causes the inconsistent flow rate of fluid and inappropriate control of injection time by a patient. It leads to an unnecessary nurse's overwork and decrement of IV injection's effect. To solve these problems, flow control infusion pumps have been developed. But because of relatively heavy weight and high price, its usage has been limited. In the present study, a new automatic IV injection system is developed. It is installed with a small pressing mechanism driven by a small electric motor to regulate the flow rate by pressing tube. Proportional integral derivative (PID) feedback control algorithm is applied to control the electric motor. The system is smaller in size and uses lower power than the existing commercial product. The newly developed system is also installed with networking capability, which enables monitoring the status of several automatic IV injection system at the same time.

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Flow Marks of Polypropylene (PP) Composites in the Injection Molding

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • 한국응용과학기술학회지
    • /
    • 제32권2호
    • /
    • pp.320-325
    • /
    • 2015
  • Flow mark is a sort of surface defect on the composite that can arise during the filling stage of the injection molding process. The purpose of this study is to clarify a mechanism of the flow mark which appears on the surface of injection molded Polypropylene (PP) through the characterization of the surface structure. The materials used in this report are PP/rubber and PP/talc compounding, which are widely used in automobile part. The flow mark shows two different constitutions, such as a luster part and a cloud part on the surface of the injection molded PP. We have investigated the surface structure of PP/rubber and PP/talc composites by using scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX) and optical microscopy (OM). As a result, the cloud part contains higher contents of the rubber and talc compare to the luster part.

분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구 (Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle)

  • 이관형;고정빈;구자예
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권1호
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

초음속 주유동에 수직 분사되는 제트의 비정상 수치해석 (Unsteady Numerical Analysis of Transverse Injection Jet into Supersonic Mainstream)

  • 최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2003
  • A series of computational simulations have been carried out for supersonic flows in a scram jet engine with and without a cavity. Transverse injection of hydrogen, a simplest form of fuel supply, is considered in the present study with the injection pressure varying from 0.5 to 1.5 MPa. The corresponding equivalence ratios are 0.167 - 0.50. The work features detailed resolution of the flow dynamics in the combustor, which was not typically available in most of the Previous studies. In particular, oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between shock waves and shear layer may cause a large excursion of flow oscillation. The role of the cavity and injection pressure are examined systematically.

  • PDF