• Title/Summary/Keyword: flow induction

Search Result 568, Processing Time 0.029 seconds

Finite Element Analysis for Forming Process of Semi-Solid Material Considering Induction Heating (유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 해석)

  • Park, W.D.;Ko, D.C.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.82-91
    • /
    • 1997
  • The major objective of this study is to establish analytical technique in order to analyze the behaviour of semi-solid material considering induction heating of the billet. Induction heating process is analyzed by using commerical finite element software. ANSYS. The finite element program, SFAC2D, for the simulation of deformation in semi-solid state is developed in the present study. The semi-solid behaviour is described by a viscoplastic model for the solid phase, and by the Darcy's law for the liquid flow. Simple compression and closed-die compression process considering induction heating are analyzed, and also it is found that the distribution of initial solid fraction of the billet has an important effect on deformation behaviour of semi-solid material. In order to verify the effectiveness of proposed analytical technique the simulation result is compared with experimental result.

  • PDF

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

Changes in the Oral Microflora in Patients with Acute Myeloid Leukemia during the Period of Induction Therapy (항암 화학요법중인 급성 골수성 백혈병 환자의 구강내 세균변화에 관한 연구)

  • Byul-Hee Lee;Chong-Youl Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.18 no.1
    • /
    • pp.73-82
    • /
    • 1993
  • To investigate the changes in aerobic and facultative anaerobic oral microflora during remission-induction chemotherapy in patients with acute myeloid leukemia, 10 consecutive patients were studied during a period of 28 days. One day before, during and after the induction therapy, patients were given 10% Betadine solution for mouthrinses after breakfast and kept from eating and drinking. After 3 hours, paraffin-stimulated whole saliva was obtained for 2 minutes and transported to the laboratory. The samples were dispersed and homogenized by use of vortex mixer for 20 seconds. From these samples 10-fold serial dilutions (from 10-1 through 10-3) were prepared. Each dilution of 0.1 ml was plated on duplicate set of one nonselective medium (Blood agar) and four selective media (Sabourauds dextrose agar, Mannitol salt agar, Mac-Conkey agar, SF medium ) using applicator woods. All agar plate were incubated at 37$^{\circ}C$ for 48 hours. The total number of microorganisms was calculated and the percentage distribution of the various microorganisms from each specimen was drawn. 1. The salivary flow rate decreased by 66%, going from 5.38 ml/2min to 1.81 ml/2min over two days during the chemotherapy. 2. The total number of microorganisms in saliva increased by 22%, going from 4.88$\times$105/ml to 6.00$\times$105/ml over two days during the chemotherapy. 3. The salivary flow rate and the total number of microorganisms in saliva were recovered within 28 days after the chemotherapy. 4. The quantitative alteration in oral Enterobacteria, Enterococci, Staphylococci, Cndida during the chemotherapy had no statistical significance. 5. In saliva of the patients with acute myeloid leukemia who ahd intraoral ulcer, Enterobacteria was quantitatively predominent. Our study suggests that chemotherapy-induced transient xerostomia may induce acute oral infection. Consequently, the use of saliva substitute, the removal of intraoral infection source and the consistent oral hygiene care seem to be required to avoid the transmission of potential pathogenes in this group of patients.

  • PDF

A Study on the Ignition Temperature and Ignition Induction Time According to Storage Amount of Wood Pellets (우드펠릿의 저장량에 따른 발화온도 및 발화유도시간에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Kim, Jung-Hun;Jeong, Phil-Hoon;Choi, Jae-Woo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • While wood pellets are often used as a fuel in thermoelectric power plants and firewood boilers, there is a risk of ignition temperature when strong wood pellets, which have a high calorific value, for prolonged periods of time. In this research study, the minimum auto ignition temperature and the ignition limitation temperature according to the change in flow rate depending on the size of the test vessel were calculated, and based on these temperatures, the apparent activation energy was calculated to predict the combustive properties of the material. The apparent activation energy was calculated to be 190.224 kJ/mol. The thicker the sample is storage in the vessel, the longer the ignition induction time was due to the increased difficulty in heat being transferred from the surface of the vessel to the middle section area of the vessel. For vessel of the same size, the higher the flow rate, the lower the auto ignition temperature was. It was also confirmed that increases in the size of the test vessel lowered the auto ignition temperature and increased the ignition induction time.

A Study on Induction Heating with Forced Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 강제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Park Joon Hong;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-102
    • /
    • 2005
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

A Study on Induction Heating with Compulsive Surface Cooling in Semi-Solid Forming Process (반용융 성형에서 간제 표면 냉각에 의한 유도 가열 방법에 관한 연구)

  • Choi, J. C.;Kim, B. M.;Choi, Y.;Park, J. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.465-468
    • /
    • 2000
  • The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of semi-solid material with compulsive surface cooling has been performed to obtain uniform distribution of temperature. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. By this new induction heating method, not only temperature over the whole billet become uniform, but also control of temperature is possible.

  • PDF

Injection Molding for a Ultra Thin-Wall Part using Induction Heating (고주파 유도가열을 사용한 초박육 플라스틱 제품의 사출성형)

  • Park, Keun;Choi, Sun;Lee, Se-Jik;Kim, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation of induction heating in order to rapidly raise the mold temperature. It is observed that the mold surface temperature is raised up to $200^{\circ}C$ in 2 seconds. This induction heating is applied to injection molding of a flexspline for a plastic harmonic drive, which has difficulty in cavity filling because its minimum thickness is only 0.35 mm. The induction heating is then successfully implemented on this ultra-thin wall molding by raising the mold surface temperature around the glass-transition temperature of the molding material.

Prognostic significance of minimal residual disease detected by a simplified flow cytometric assay during remission induction chemotherapy in children with acute lymphoblastic leukemia

  • Koh, Kyung-Nam;Park, Mee-Rim;Kim, Bo-Eun;Im, Ho-Joon;Park, Chan-Jeoung;Jang, Seong-Soo;Chi, Hyun-Sook;Seo, Jong-Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.11
    • /
    • pp.957-964
    • /
    • 2010
  • Purpose: Our study attempted to determine the prognostic significance of minimal residual disease (MRD) detected by a simplified flow cytometric assay during induction chemotherapy in children with B-cell acute lymphoblastic leukemia (B-ALL). Methods: A total of 98 patients were newly diagnosed with precursor B-ALL from June 2004 to December 2008 at the Asan Medical Center (Seoul, Korea). Of those, 37 were eligible for flow cytometric MRD study analysis on day 14 of their induction treatment. The flow cytometric MRD assay was based on the expression intensity of CD19/CD10/CD34 or aberrant expression of myeloid antigens by bone marrow nucleated cells. Results: Thirty-five patients (94.6%) had CD19-positive leukemic cells that also expressed CD10 and/or CD34, and 18 (48.6%) had leukemic cells with aberrant expression of myeloid antigens. Seven patients with ${\geq}1%$ leukemic cells on day 14 had a significantly lower relapse-free survival (RFS) compared to the 30 patients with lower levels (42.9 % [18.7%] vs. 92.0% [5.4%], $P$=0.004). Stratification into 3 MRD groups (${\geq}1%$, 0.1-1%, and <0.1%) also showed a statistically significant difference in RFS (42.9% [18.7%] vs. 86.9% [8.7%] vs. 100%, $P$=0.013). However, the MRD status had no significant influence on overall survival. Multivariate analysis demonstrated that the MRD level on day 14 was an independent prognostic factor with borderline significance. Conclusion: An MRD assay using simplified flow cytometry during induction chemotherapy may help to identify patients with B-ALL who have an excellent outcome and patients who are at higher risk for relapse.

An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine (SI엔진의 정상상태 유량 특성에 관한 실험적 연구)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF