• Title/Summary/Keyword: flow field characteristics

Search Result 1,759, Processing Time 0.026 seconds

Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages

  • Lei, Yongfu;Sun, Yanguo;Zhang, Tianyi;Yang, Xiongwei;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • To better understand the vortex-induced vibration (VIV) characteristics of a 5:1 rectangular cylinder, the distribution of aerodynamic force and the non-dimensional power spectral density (PSD) of fluctuating pressure on the side surface were studied in different VIV development stages, and their differences in the stationary state and vibration stages were analyzed. The spanwise and streamwise correlations of surface pressures were studied, and the flow field structure partitions on the side surface were defined based on the streamwise correlation analysis. The results show that the variation tendencies of mean and root mean square (RMS) pressure coefficients are similar in different VIV development stages. The RMS values during amplitude growth are larger than those at peak amplitude, and the smallest RMS values are observed in the stationary state. The spanwise correlation coefficients of aerodynamic lifts increase with increase of the peak amplitude. However, for the lock-in region, the maximum spanwise correlation coefficient for aerodynamic lifts occurs in the VIV rising stage rather than in the peak amplitude stage, probably due to the interaction of vortex shedding force (VSF) and self-excited force (SEF). The streamwise correlation results show that the demarcation point positions between the recirculation region and the main vortex region remain almost constant in different VIV development stages, and the reattachment points gradually move to the tailing edge with increasing amplitude. This study provides a reference to estimate the demarcation point and reattachment point positions through streamwise correlation and phase angle analysis from wind tunnel tests.

Quantification of Turbulence Characteristics on the Concentration Distributions of Traffic-related Pollutants Near Roadways (도로변 난류특성과 교통량에 따른 차량유발 난류강도 정량화: 도로변 풍상/풍하 측에서의 3차원 풍속 동시 측정에 기반)

  • Yongmi Park;Subin Han;HanGyeol Song;Seung-Bok Lee;Kyung-Hwan Kwak;Changhyuk Kim;Wonsik Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.343-354
    • /
    • 2023
  • Turbulence produced on roadways is one of the major factors determining the dilution rates at the initial stage of traffic emissions of air pollutants and, thus, the distribution of air pollutants near the roadways. Field experiments were conducted on Gyeongbu Highway, one of the busiest highways in Korea, for 4~7 days in winter, spring, and summer. Two three-dimensional ultrasonic anemometers were installed on both sides of the highway to estimate turbulence intensities (vertical wind fluctuation and kinetic turbulence energy) induced by the roadway. Roadway-induced turbulence consists of three components: structural road-induced turbulence (S-RIT), thermal road-induced turbulence (T-RIT), and vehicle-induced turbulence (VIT). The contribution of T-RIT to the total RIT was insignificant (less than 10%), and the majority of RIT was S-RIT (by the highway embankment) and VIT. In this study, we propose the empirical relationships of VIT as a function of traffic density and wind speed under free-flow traffic conditions. Although this empirical relationship appears to underestimate the VIT, it can be applied to the air quality models easily because the relationship is simple and only needs readily obtainable input variables (wind speed and traffic information).

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Development and Application of Water Balance Network Model in Agricultural Watershed (농업용수 유역 물수지 분석 모델 개발 및 적용)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Koh, Bo-Sung;Kim, Kyung-Mo;Jo, Young-Jun;Park, Jin-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.39-51
    • /
    • 2024
  • To effectively implement the integrated water management policy outlined in the National Water Management Act, it is essential to analyze agricultural water supply and demand at both basin and water district levels. Currently, agricultural water is primarily distributed through open canal systems and controlled by floodgates, yet the utilization-to-supply ratio remains at a mere 48%. In the case of agricultural water, when analyzing water balance through existing national basin water resource models (K-WEAP, K-MODISM), distortion of supply and regression occurs due to calculation of regression rate based on the concept of net water consumption. In addition, by simplifying the complex and diverse agricultural water supply system within the basin into a single virtual reservoir, it is difficult to analyze the surplus or shortage of agricultural water for each field within the basin. There are limitations in reflecting the characteristics and actual sites of rural water areas, such as inconsistencies with river and reservoir supply priority sites. This study focuses on the development of a model aimed at improving the deficiencies of current water balance analysis methods. The developed model aims to provide standardized water balance analysis nationwide, with initial application to the Anseo standard watershed. Utilizing data from 32 facilities within the standard watershed, the study conducted water balance analysis through watershed linkage, highlighting differences and improvements compared to existing methods.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Store Module Case Study of Traditional Market (전통시장 점포모듈 사례분석 연구)

  • Lee, Kyung-Sik;You, Yen-Yoo;Kim, Jung-Ryol
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.255-265
    • /
    • 2017
  • The study analyzed previous studies on traditional markets and market modernization projects to analyze research trends and content related to traditional markets. Next, the study selected 4 traditional markets throughout the nation where there was promotion of market modernization projects to conduct field research and interviews about store modules, line of flow, facility configuration, and types of businesses. Empirical comparative analysis was conducted on construction hardware status through measurement and observation and data was collected on business environment and requirement characteristics by business type through interviews with merchant associations of the corresponding markets. Consistent standard was applied as much it was possible to comparatively analyze the 4 market modernization cases and on the unique characteristics of individual markets, the cause was determined in conjunction to the history of the business promotion process and regional characteristics. After the study, basic data to suggest guidelines in store modules by business type in traditional markets could be acquired and the study identified the facilities equipment standards that must be considered in future market modernization projects. Through this it will be possible to derive policy implications to minimize trial and error and guarantee business efficiency in future market modernization projects.

The Decrease of Korean Population and the Changes of Regional Characteristics in Rural Area of Yanbian Korean Autonomous Prefecture (중국 연변 농촌지역의 조선족인구 감소와 지역성 변화 - 두만강변 조선족 농촌 마을을 중심으로 -)

  • Lu, Bi Shun
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.668-682
    • /
    • 2013
  • This study illustrates the mechanism of The Decrease of Korean population in Yanbian Korean Autonomous Prefecture (YBKAP) and some changes of regional characteristics since China's economic reforming. Due to China's Implementing market economic system, deregulating in family register system, higher mobility since establishing Sino-Korean diplomatic relations, the expansion of intermarriages and residential areas, Korean community is confronted with lower birthrate and continuous mobility of the young and women. It directly connects to a decrease in urban population and aging, causing a decline in farming production, disintegrating of Korean community, weakening the function of villagers' organization, shrinking in Korean education and leaderships. For supplementing the shorted labor, Chinese farmers from other areas flow into the YBKAP, showing some different trends, such as farming Chinesization, Chinese farmers' higher economic level than Korean, the Korean traditional paddy field transforming into dry farmland with single-crop farming and pursuing commercial production in labor management. At the moment, declining population in Korean community in rural areas means that the community could not respond the changes of farming environments appropriately and in some way it is facing with the crisis of die away from the Chinese society. It needs an unconventional support and development policies in YBKAP rural areas.

  • PDF

Characteristics of ecological structure and spatial distribution of micro-plankton in relation to water masses in the northern East China Sea(nECS) in summer 2019 (2019년 여름 동중국해 북부해역의 수괴 분포에 따른 미소플랑크톤의 공간분포 및 생태구조 특성)

  • Yoon, Yang Ho;Park, Ji Hye;Lee, Hyeon Ji;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.355-370
    • /
    • 2020
  • We conducted a field survey to analyze the ecological structure and spatial distribution of microplankton (phytoplankton and ciliates) in relation to water masses at 21 stations on the surface and chlorophyll-a maximum layers (CML) in the Northern East China Sea (nECS; 32°-33°N; 124°00'-127°30'E) from August 3 to August 6, 2019. The results showed that the water masses were divided into Chinese Coastal Waters (CCW) and the Tsushima Warm Current (TWC). The CCW showed the environmental characteristics of high temperature and low salinity, and the TWC showed high temperature and high salinity. The characteristics of the phytoplankton community in the CCW showed various community structures related to the nutrients supplied from the large rivers of the Chinese continent. However, the TWC had simple community structures because it originated near the equator and moved northward. The standing crops of phytoplankton and ciliates were very high in the CCW but showed low at the TWC. In particular, from the higher standing crops of protozoa than plant plankton at the TWC, the energy flow at the lower tropic levels caused by the microbial loop that fed on heterotrophic bacteria played an important role in the production of resource organisms. In other words, the marine ecological structure of the nECS in summer could be estimated as a bottom-up system at the CCW and a top-down system at the TWC.

Development of Two Dimensional Blade Section with High Efficiency for Marine Propeller (선박 프로펠러용 고효율 2차원 날개단면 개발)

  • Na, Yun-Cheol;Song, In-Haeng;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.11-23
    • /
    • 1997
  • This paper contains a new approach to blade section design method for marine propellers. The hydrodynamic characteristics of 2-D section are highly influenced by its geometrical parameters i.e., thickness and camber distributions and leading edge radius etc. To consider fully turbulent flow field near 2-D section. the finite volume method with k-${\varepsilon}$ turbulent model which solve Reynolds time averaged Navier-Stokes(RANS) equation is applied. In this study, O-type grid system that can provide many calculation points on blade surface is used. The results were compared with those of the experiment of NACA0012 to confirm the accuracy of the developed codes. The goal of this study is the development of a blade section with high efficiency and low drag. To achieve this, we carried out the tests of lift, drag and cavitation characteristics in cavitation tunnel. The results of experiment were compared with numerical results in order to validate the proposed blades design method. By comparing the numerical results with the experiments, we found that the new blade section, KH28 allows superior performance in efficiency and cavitation avoidance characteristics. We further investigated the blade section design method and an application study of this section, KH28 to apply to the marine propeller. In order to improve the accuracy of numerical results on prediction of lift and drag, we conclude here that the 2-layer boundary model must be used.

  • PDF