• Title/Summary/Keyword: flow distribution

Search Result 5,475, Processing Time 0.044 seconds

Two-Phase Flow Distribution and Phase Separation Through Both Horizontal and Vertical Branches

  • Tae, Sang-Jin;Keumnam Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1211-1218
    • /
    • 2003
  • The present study investigated two-phase flow distribution and phase separation of R-22 refrigerant through various types of branch tubes. The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), mass flux (200-500 kg/㎡s), and inlet quality (0.1-0.4). The predicted local pressure profile in the tube with junction was compared and generally agreed with the measured data. The local pressure profile within the pressure recovery region after the junction has to be carefully investigated for modeling the pressure drop through the branch. The equal flow distribution case can be found by adjusting the orientation of the inlet and branch tubes and the diameter ratio of the branch tube to the inlet tube. The T-junction with horizontal inlet and branch tubes showed the nearly equal phase distribution ratio. The quality at the branch tube varied from 0 to 1 as the orientation of the branch tube changed, while it varied within${\pm}$50% as the orientation of the inlet tube changed.

An Experimental Study on the Leakage Characteristics of a Labyrinth Seal (Labyrinth Seal 의 누설 특성 실험)

  • 하현천;변형현;박철현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.141-146
    • /
    • 1999
  • An experimental investigation on the leakage characteristics of a labyrinth seal, high-low seal, is studied. Pressure distribution and leakage flow rate are measured along with the shaft speed and the pressure difference between the entrance and the exit. Pressure distribution vanes almost linearly along the seal and the leakage flow rate increases as the increase of the pressure difference. Furthermore, it is found that both the shaft speed and the shaft vibration have no influence on the leakage of the labyrinth seal.

  • PDF

A Study on Operation Condition of Blast Furnace According to Burden Distribution (장입물 층상구조에 따른 고로내 운전상황 변화 연구)

  • Yang, Kwang-Heok;Choi, Sang-Min;Jung, Jin-Kyung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.145-150
    • /
    • 2006
  • At the furnace top, the distribution of charging coke and ore is adjusted to control the reducing gas flow distribution in the furnace. It is necessary to predict operation condition of blast furnace according to the burden profile to judge whether charging is properly conducted In this study, We propose the model for predicting while layer structures whithin furnace when top burden profile was given. Layer structure of coke and ore could be predicted by top burden profile and solid velocity. Solid velocity is assumed as potential flow. Potential function distribution and timeline are also calculated using solid velocity field. The Calculation is conducted for different burden profile cases. As the result burden distribution and grid structure, which is deformed to match the layer structure in shaft and deadman profile. Gas flow was calculated using this grid, and calculated results are compared with each other.

  • PDF

Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System (배전용 몰드변압기의 온도특성 파악을 위한 열유동해석)

  • Kim, Ji-Ho;Lee, Jeong-Gun;Lee, Ki-Sik;Rhee, Wook;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

Performance Evaluation of the Velocity Profile Integration for the Multi-Path Ultrasonic Flowmeter in Symmetric & Asymmetric Flow Field (대칭 및 비대칭 유동장에서 다회선 초음파 유량계의 유속분포 적분 방법 평가)

  • Kim, Joo-Young;Kim, Kyung-Jin;Park, Sung-Ha
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.370-377
    • /
    • 2002
  • Generally, the system of calculation for the multi-path ultrasonic flow meters can be divided into two methods by how to get the mean velocity, namely, weighting and direct method. Weighting-method derive the mean velocity through modeling in theoretical velocity profile. Direct-method derive the mean velocity though actual flow distribution. The system of calculation varies with maker's transducer configuration and integration method. Each system has merits and demerits. This paper describes the system of integration that calculates line velocity over cross-section of the circular pipe. Flow rate mr discussed in this paper is a difference between theoretical flow rate and integrated flow rate according to values of Reynolds number in symmetric flow field or theoretical flow rate and integrated flow rate according to rotated model in asymmetric flow field.

  • PDF

The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility (하나로 유동모의 시험설비의 노심채널 유동분포 해석)

  • Park Y C.;Kim K. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment (폐결핵치료전후(肺結核治療前後) 방사성동위원소(放射性同位元素)스캔에 의(依)한 폐기능(肺機能)의 비교(比較))

  • Rhee, Chong-Heon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.1-25
    • /
    • 1967
  • In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurements and lung perfusion scans by $^{131}I$-Macroaggregated albumin, lung inhalation scans by colloidal $^{198}Au$ and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1. The normal distribution of pulmonary blood flow was found to be $54.5{\pm}2.82%$ to the right lung and $45.5{\pm}2.39%$ to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p<0.01). In the minimal pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $52.5{\pm}5.3%$ to the right lung and $47.5{\pm}1.0%$ to the left lung when the tuberculous lesion was in the right lung, and $56.2{\pm}4.4%$ to the right lung and $43.8{\pm}3.1%$ to the left lung when the tuberculous lesion was in the left lung. The difference of pulmonary arterial blood flow between the right and left lung was statistically not significant compared with the normal distribution. In the moderately advanced pulmonary tuberculosis, the average distripution of pulmonary arterial blood flow was found to be $26.9{\pm}13.9%$ to the right lung and $73.1{\pm}13.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $79.6{\pm}12.8%$ to the right lung and $20.4{\pm}13.0%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved, the average distribution of pulmonary arterial blood flow was found to be $49.5{\pm}8.01%$ to the right lung and $50.5{\pm}8.01%$ to the left lung. In the far advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $18.5{\pm}11.6%$ to the right lung and $81.5{\pm}9.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $78.2{\pm}8.9%$ to the right lung and $21.8{\pm}10.5%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved the average distribution of pulmonary arterial blood flow was found to be $56.0{\pm}3.6%$ to the right lung and $44.0{\pm}3.2%$ to the left lung. 2. Lung perfusion scan by $^{131}I$-MAA in patients with pulmonary tuberculosis was as follows: a) In the pretreated minimal pulmonary tuberculosis, the decreased area of pulmonary arterial blood flow was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive than had been expected from the chest roentgenogram in the apparently healed minimal pulmonary tuberculosis. b) In the pretreated moderately advanced pulmonary tuberculosis, the decrease of pulmonary arterial blood flow to the diseased area was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive in the treated moderately advanced pulmonary tuberculosis as in the treated minimal pulmonary tuberculosis. c) Pulmonary arterial blood flow in the patients with far advanced pulmonary tuberculosis both before and after chemotherapy were almost similar to the chest roentgenogram. Especially the decrease of pulmonary arterial blood flow to the cavity was usually greater than had been expected from the chest roentgenogram. 3. Lung inhalation scan by colloidal $^{198}Au$ in patients with pulmonary tuberculosis was as follows: a) In the minimal pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram. b) In the moderately advanced pulmonary tuberculosis the decrease of radioactivity in the diseased area was partly corresponding to the chest roentgenogram in one hand and on the other hand the radioactivity was found to be normally distributed in stead of tuberculous lesion in the chest roentgenogram. c) In the far advanced pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram as in the minimal pulmonary tuberculosis. 4. From all these results, it was found that the characteristic finding in pulmonary tuberculosis was a decrease in pulmonary arterial blood flow to the diseased area and in general decrease of pulmonary arterial blood flow to the diseased area was more extensive than had been expected from the chest roentgenogram, especially in the treated group. Lung inhalation scan showed almost similar distribution of radioactivity corresponding to the chest roentgenogram in minimal and far advanced pulmonary tuberculosis, but there was a variability in the moderately advanced pulmonary tuberculosis. The measured values obtained from spirometry were parallel to the tuberculous lesion in chest roentgenogram.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

Load Flow Algorithm Analysis of Distribution System (배전계통 부하조류계산 알고리즘 비교 분석)

  • Kwak, Do-Il;Kim, Tae-Eung;Ryu, Jae-Hong;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.134-136
    • /
    • 1999
  • Not much work has been carried out on the load flow analysis of distribution networks. This paper introduces Newton-Raphson method using Distflow equation and Forward Sweeping method in the distribution networks. And that efficient solution scheme in a radial distribution network is presented. Also, simulation results of both Newton-Raphson method and Forward Sweeping method applied to a 22.9kV distribution system model with 120 load buses are analized and evaluated.

  • PDF